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Summary. Lyapunov's second method is applied to the question of stability when
dynamic cross coupling is considered. The main result is a condition on the maximal
non-symmetry that gives stable performance for any constant or non-constant angular
velocity in roll. Methods are outlined for the treatment of some related questions.

Introduction. For modern aircraft capable of high rolling velocities and for missiles
the phenomenon of inertia coupling instability, predicted by W. H. Phillips [2], is very
important. The published theoretical investigations seem to treat only the case of a
constant rolling velocity and to assume constant coefficients in the linearized equations
of motion. These assumptions make it possible to use the theory of linear differential
equations with constant coefficients.

The object of this paper is to show that the use of Ljapunov's second method and
the theory of quadratic forms offers possibilities of extending the study to non-constant
coefficients and velocity. When a missile has a certain degree of symmetry, inertia
coupling will never give rise to instability. The main part of the study is devoted to
criteria in this direction. We also indicate methods for estimating allowed rolling veloci-
ties, when the missile is not sufficiently symmetric. In order to prove that the results
are reasonable, they are compared with those for a constant rolling velocity.

In Ref. [2] it is found that for given values of the natural dampings of the oscilla-
tions in pitch and yaw, the ratio of the natural frequencies has to be in a certain interval
around 1, if the motion is to be stable for all constant values of the rolling velocity.
The results are generalized to non-constant velocities. We also discuss the case when
frequency and damping are changed by simple controlling devices.

1. Equations of motion.

1.1. Let xyz be a system fixed in the missile and assume that the velocity has
small components vaz and vay in the y- and ^-directions, v > 0 being the velocity in the
z-direction. Let Jx , Jy , Jz denote the moments of inertia and u, , oj„ , the angular
velocities about the axes x, y, z. These axes are assumed to be principal inertia axes and
to form the reference system for the aerodynamic coefficients c„, cs, ev, ez, /„, fz, which
appear in Eq. (1.1) below. The mass will be denoted by to.

^Received April 14, 1961.
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If we apply the equations of forces and moments in the y- and z-directions, we get
the linearized equations:

d̂
 (viva,) + m(w,V — 0}xvav) = — C,az ,

~ (mvav) + m(—u„v + ccxva2) = —cyav ,

(1.1)
v^v) J x) ByGty / J

(^a) + Olx^JJy — Jx) = eza, — fzu, ,

where the aerodynamic coefficients are assumed to be positive.
In order to deduce these equations we follow Ref. [1], where we use Tables I and II

of the aerodynamic forces and moments. From Table I we have used Item 1 "forces due
to angles of attack and yaw", from Table II Items 1 and 2 "moments due to angles of
attack and yaw", and "moments due to pitching and yawing angular velocities". Items
6 and 7 of both tables are of no interest as regards stability. "Magnus pitching and
yawing moments" and "moments due to rolling combined with pitching and yawing
angular velocities" are assumed to have small effects and will not be considered until
Sec. 7, where they are briefly discussed. Other forces and moments in the tables do not
change the form of our equations, but would only change the numerical values of the
coefficients. For simplicity they are omitted.

1.2. In the first attack we assume that the mass, the velocity v, the moments of
inertia and the aerodynamic coefficients are all constants. When this assumption is
relaxed, there are some modifications to be discussed in Sec. 6.

1.3. No equations have been used for the .T-direction. This gap is filled by allowing
v to be a variable (see Sec. 6 for modifications, when v is not a constant) and wx to be any
quantity (provided that the mathematical operations performed have a meaning).
This point of view seems to be of interest for a guided missile, where u, depends on the
imposed manoeuvres.

Many investigations have been carried out for steady rolling. An important question
is therefore whether consideration of a variable ux causes considerable changes of stability
criteria. This equation is touched upon in Sec. 5.

It seems that for many questions it is sufficient to consider only the case of a constant
rolling velocity.

1.4. Let Xi = mva„ , x2 = </„«„, x3 = mvat , x4 — Jzcoz form the vector X and let a
dot denote differentiation with respect to t. The Eq. (1.1.) can be written as

X' + AX = 0, (1.2)
where the matrix A has the form

C, -J, CO, 0

Ei Fi 0 Kiwx q

wE 0 C2 J 2

0 K2UX —E2 f2
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with positive coefficients C, F, E, J, K connected with the coefficients of (1.1) by

C\ = c„(my)_1, C2 = cXmv)_1, Fi = fyJy\ F2 = /.JJ1

Ei = ev(jnv)~x, E2 = ez(mv)~x, Ji = mvJ~l, J2 = mvJ~x

K, = (J, - JJJ71 and JC2 = (/„ - jjj;1
(1.4)

In the case of symmetry Ci = C2 ; = F2 ; = E2 ; A = /2; — K2 . The assump-
tions of Sec. 1.2 imply that A is constant.

2. On the mathematical tools for the investigation.

2.1. In what follows Qi and Q2 denote quadratic forms in xx, x2, x3, x4, but also the
symmetric matrices generating those forms. The form Qi is always assumed to be positive
definite, i.e. a positive number q shall exist such that Qx is larger than q{x\ + • • • + x24)
for all values of X ^ 0. The matrix Q1 is constant, except in Sec. 7.

2.2. When the form Qx is given, Q2 is calculated from

= (2.1)

using (1.2). If both Qi and Q2 are positive definite, Eq. (2.1) obviously implies that X
tends to zero when t tends to infinity. This is true for any initial condition on X. Consider
for instance

Qi = x\ + x\ + q(K2x22 + Kixl), (2.2)

where q is a positive parameter. Then

Q2 = 2 Cxx\ + 2 C2xl + 2q(F1K2xl + F2KlX\) (2

+ 2(qE1K2 — J^)xxx2 + 2(J2 — qE^^XsXi .

If there is a positive number q such that (2.3) defines a positive definite form, then
(1.2) and hence (1.1) is asymptotically stable for all finite functions wx. The choice (2.2)
of Qi may seem to be a very special one, but we will prove that it is the only Qi such that
Q2 does not depend on . Since we shall restrict ourselves to quadratic forms QL for
"Ljapunov functions" it is natural to study (2.3).

The particular case, including that of symmetry, when = J2E2lKiX( = q)
is obvious. The question to be answered is, how much deviation from this strict equality
(symmetry) can be allowed if (1.1) is to be stable?

2.3. The necessary and sufficient condition for a form Q2 to be positive definite is
that the characteristic values of the matrice Q2 are all positive. Let these values be
Si, • • • , Si which are all real since Q2 is symmetric. An orthogonal transformation exists,
which brings Q2 into

Q2 = Silh + s2yl + s3yl + s4yl ■ (2.4)

Assume that Q2 is the sum of two forms Q21 and Q22, and that s, s' and s" are the smallest
characteristic values of the corresponding symmetric matrices. From (2.4) one easily
deduces

s > s' + s". (2.5)
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2.4. Let A and B be symmetric matrices, B ^ 0, and s be a real number. Then the
zeros wx of | s + A + wxB | are real. From (2.5) it follows that if we want Q2 , defined
by (2.1), to be positive definite for all ux , it is necessary to choose Qi to make Q2 inde-
pendent of ccx. Simple calculations show that the only possibility is (2.2) when KiK2 ^ 1.
We have KxK2 — (Jy — Jr){Jz — JX){JVJz)~l smaller than 1, but also close to 1. It can
be of interest to note the general form of the matrix Qi for which Q2 is independent of wx
in the case KXK2 = 1, namely

1 Kt 0 8

Kt qK2 K8 0

0 KS 1-6

5 0 — e qKr

K = K2 = K;1. (2.6)

The numbers e, 5, q must satisfy e + 82 < q/K to give a positive definite form Qi .
2.5. We make a remark on the case of time-dependent Qi and Q2, connected through

(2.1). Here positive definitness is not quite sufficient to secure stability of (1.2). If the
characteristic values of Qi are allowed to tend to zero when t tends to infinity, we can-
not conclude that X has the limit zero, even if has. We shall in this case (Sec. 7)
request that there are time-independent, positive definite forms Qu ; i, j = 1, 2, such
that Qii < Qi < Qi2 ; i = 1, 2. This remark is more for theoretical completeness than of
practical value for the applications, where we can safely assume Q, to behave properly.

3. Condition for stability for any rolling velocity.

3.1. We return to (2.3). The matrix Q2 has the form ^ with square matrices

A, B of order 2. The secular equation for Q2 reduces to the two second order equations
for A and B. With 2C\ = a, 2C2 = b, 2FlK2 = c, 2F2KX — d, EXK2 = e, E2K1 = / and
Ji = g, J2 — h as temporary notations these equations in s are

(qe - g)2 = (a - s)(qd - s), (3.1)

(9f ~ hf = (b - s)(qc - s). (3.2)
A necessary and sufficient condition for all the roots of (3.1) and (3.2) to be positive

is that q satisfy the inequalities

(le ~ g)2 ^ 1ad and (qf ~ h)2 < qbc.

The first inequality is satisfied if ^ < q < q2, the second one if q3 < q < qt, where

?i,2 = (2fi2) 1 {2ge -j- ad -F [(dd)2 -)- 4egrctcZ]1/2} = 8i -F 82 ,

?3,4 = (2f) 1{2hf + be =F [(be)2 + 4~fhbc]1/2} = 8j T i( .

The two intervals for q have a common part if and only if | — S3 | < 82 + 54 . This
last inequality can be transformed into the following form, where we return to the
notations of (1.3).
D2 ^ [(K1J1J21)1/2(C2F2 + J2E2)1/2 - + J^01/2]2 (3 3)

< [{k.jm'W'2 + (k2j2j:1c1f1)1/2]2 = ^ .
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The physical meaning of (3.3) is hidden behind the unusual symbols, which have
been used for formal reasons. In Sec. 5 we shall give an interpretation in natural fre-
quency, damping factor and time constants.

Theorem 1. The system (1.1) is stable for any (even a non-constant) rolling velocity
if the inequality (3.3) is satisfied.

3.2. We have found in Theorem 1 a sufficient condition on the allowed asymmetry,
if our system is to be stable. The system might be stable even if the condition is violated
and it can be questioned how sharp the result is. We shall therefore consider the case of
constant rolling velocity and derive an inequality similar to (3.3) in 3.4. This result is
necessary and sufficient, and by comparing it with (3.3) the usefulness of Theorem 1
can be estimated. Section 2.4 indicates that the theorem is quite sharp.

3.3. The Eqs. (3.1), (3.2) can be used to estimate the "degree of stability", i.e.
how fast X tends to zero. Let s be the smallest number among the four roots of these
equations, r the maximum of 1, Kxq, K2q and let v = sr~ . Then

Qitt) < Q1(0)e~" (3.4)
since

Q2 = | Qi < six2, + ■■■ +xt) < -vQt

according to (2.4).
3.4. For a constant value 0 of the rolling velocity ux the system (1.2) is linear

and has constant coefficients. The stability is governed by the real parts of the zeros
s,- of the determinant

| A -f- s | = s4 -f- a3(0)s3 -(- a2(0)s2 -f- di(0)s -f- a0(O).

The system is stable if and only if all the real parts are negative. A necessary condi-
tion is that the coefficients a0 • ■ • a3 be positive. Consider in particular

a0(fi) = b0 + biQ2 + K1K2Sli with

bo = (CJ'\ + ElJl){C2I<\ + E2J2) and

bj = ClC\KlK2 + F,F2 - J1E2K1 - J2E,K2 .

It holds that a0 is positive for all 0 if and only if b, > 0 or b\ < ^K1K2b0 . The last in-
equality can be transformed into

Z)2 < (C&Jj;1 + + F2) = 4>2 , (3.5)

where D is defined in (3.3). If bt is positive (3.5) is satisfied. An application of Routh's
test proves that condition (3.5) is also sufficient for stability.

Theorem 2. The system (1.2) is stable for all constant rolling velocities if and only
if (3.5) is satisfied.

The inequalities (3.3) and (3.5) have almost the same form, their right members
differing by

<t>2 ~ *1 = [(CiC2M2)1/2 - (W/2]2. (3.6)

The relations (3.3), (3.5) and (3.6) are difficult to discuss in their present form. We shall
return to them in connection with a physical interpretation in Sec. 5.
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4. Estimation of admissible rolling velocities in non-symmetric cases.
4.1. If (3.5) is violated we cannot have stable performance for all constant values

0 of o}x. From 3.4 it follows that we have instability if

Hi < I 0 I < 0. , where fljfl = T (b\ - 4KlKJbtf/*\. (4.1)
See Ref. [2], The numbers S2X ,2 are the zeros of a0(fi).

The natural generalization to non-constant u, is to ask for upper bounds w0 on | wx | if
(1.2) is to be stable for all ux of modulus smaller than co0 . When (3.5) does not hold we
find in Oi an upper bound for w0 , and we will first search for estimates in the other
direction.

4.2. We consider

Qx = Sxx\ + S2xl + S-ixl + Sixl , all S{ positive. (4.2)
The corresponding matrix Q2 is given by

2SlCl E& - J1S1 ci,(Sj - S3) 0

EvS2 - J1S1 2S2Fi 0 cox(K2St - KltS2)

w,(S, - S3) 0 2S3C2 J2S3 - B2S4

0 o>x(K2St - KA) J2S3 - E2S4 2SiF2

The characteristic numbers of Q2 are real. It follows that they are positive for all
| a)* | < co0 , if they are positive when ux = 0 and if the determinant of (4.3) is positive
when | «x | < w0 . Any particular choice of Qx will in this way give an estimate of w0 .
Even if Qi is restricted according to (4.2) it is not easy to find the best choice of Qi . We
will be content with some special choices which give rather good results (see Sec. 5.4)
with a small amount of computation.

We can introduce zeros for some of the elements in (4.3) and reduce the computations
to matrices of order 2 if we choose

Si — J2K2Ei , S2 = Ji</2K2 , S3 = JiKiE2 , St = Ji J2Ki or (4.4)

Si = S3 = E,E2 , S2 = E2J1 , Si = EvJ2 . (4.5)

These choices of Qx yield the estimates

wo > ±C1C2JlJ2K1K2ElE2{JlK1E2 - JJC.E.y2, (4.6)

wo > 4:J1J2F1F2E1E2(J1KlE2 - J2K2EX)'2, (4.7)

which are discussed in Sec. 5.
4.3. The notations

EiJi CiFi = Of and E2J2 + C2F2 = fi, (4.8)

are introduced for later use. Assume for simplicity that

Ki = K2 = 1 and Ji = J2( = J) (4.9)

are good approximations. Let in (4.3)

Si = s2 = j2, s! = nl, s3 = 0*.
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It follows that
coo > C1C2(40„2 - C1F1){- C'2F2)(fi2„ - a2,)-2. (4.10)

In a similar way one proves that

CO* > F1F2(AQ,l - CJOdOl - C2F2)(Ql - my2. (4.11)
4.4. The number u0 can also be estimated with the aid of (2.5). We will here use

this method to prove that if (3.3) is not true, when (3.5) holds, instability will occur
only if very high rolling velocities are allowed. The matrix Qi is considered to have the
form (2.6), the number K being equal to (1 + &i)(l + Kt)'1. The corresponding Q2
has the form Q2l + Q22 , where Q22 depends on , but Q2l is independent of wx . The
characteristic values of Q22 have the same modulus and

s" = -1 «. I (e2 + 52)1/2(1 - K,K2){ 1 + K2y\ (4.12)

Assume that (3.3) is turned into equality. In that case there is a value q0 of q, such
that (3.1) and (3.2) both have s = 0 as their smallest solution. For this value of q, values
of a and 5 exist such that the characteristic numbers of Q21 are larger than M(t + <S2)I/2,
where M depends on C\ , C2 ■ ■ • . For sufficiently small values of e and 5, M can be
chosen to be positive and independent of e, 8. An application of (2.5) using this and
(4.12) proves that

wo > M( 1 + K2)(l - M2)_1. (4.13)

When Kj and Ii2 are close to 1, high rolling velocities are hence needed to give in-
stability. This is also true by continuity if (3.3) is violated with a small difference be-
tween the left and right members.

The result does not contradict the unconditional stability for high constant rolling
velocities, since we have not assumed constant ux .

5. An interpretation.

5.1. Let and' denote the natural frequency and damping factor for motions
in the y-direction, which are found from the equations for xx and x2 in (1.2), when o:x = 0

n2 = JyE, + G1Fl and 2f,0, = C, + F, . (5.1)

From the equation for xx ,

(Cl + Jt)Xl + JlX2 = °

we can interpret C^1 as a well-known time constant

cr1 = Tv . (5.2)
Relations involving the symbols C, E, F, J, K can thus be given in a more familiar

form if (5.1), (5.2) and their obvious analogues for the z-direction are used. For further
simplification we introduce

Hy = Jy Q„ , H'y = 2jy£ytty and H y = JyT'y1, (5.3)
the similar quantities for the z-direction and adopt the convention that indices are
dropped to denote the geometrical mean

H2 = HyHz and so on. (5.4)
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Since our primary interest is in cases, where Jx is much smaller than Jv and Jz , we
will make the approximation

K, = Kt = 1. (5.5)
5.2. The inequality (3.3) transforms into

\H.-H.\< [H'/(H'y - //;')]1/2 + [H'/{H'Z - //'/)]1/2 — 2[H"(H' - H")]1/2. (5.6)

The approximation is obtained if we replace a + b by 2(ab)i and assume that H'/ — II'J
is a small quantity, a and b being the square roots in the exact inequality.

From (3.5) one obtains

| H„ - H, | < (Hi + II'/ - H'/)U\H'Z + II'/ - H'/)U2 ~ H (5.7)
a slight generalization of the results in [2] to arbitrary moments of inertia, Jv and Jc .

Let R be the ratio of the approximate right member of (5.7) to that of (5.6) and
r = for. Then

R = r(2r - 1)1/2. (5.8)

The following table shows that R is quite close to 1 for many cases of practical interest:

r = 0.625 0.75 1 2.5 5 8.5
R = 1.25 1.06 1 1.25 1.66 2.125

The deviation in natural frequency, which is allowed for a stable motion with ar-
bitrary rolling velocities, can certainly not be larger than the allowed deviation in the
special case of steady roll. We conclude that Theorem 1, though only sufficient, is rather
sharp. One can also infer that in most cases it is sufficient to study only steady roll.

5.3. The results of Sec. 4 will also be reformulated with the aid of 5.1. The num-
bers b0 and hi from 3.4, which appear in (4.1), are given as

b0 = fi20? = Q4 and -b, = 2fi2 + (Q„ - 02)2 - 4f O2 + (T'1 - T;1)2

- 2(271 - Tr'XfA ~ fA).
We will assume for simplicity that

Jy = J. (5.9)
for the remaining part of this section, with some obvious exceptions. The equation

-&! = 2(1 + r2)02 (5.10)
defines a number r, which is real if and only if (3.5) is violated, see (5.7). The numbers
0! and Q2 defined in (4.1) are

q, = [1 + r2 + (2r2 + r4)1/2]~1/2 and fl, = (• ■ -)U2, (5.11)

where (• • •) is repeated from O, . In particular it holds that = Q, the geometrical
mean of and , when r = 0.

Under the assumption that J{Ef is much larger than C;F; , i — 1, 2, we can find
similar lower bounds for «0 from (4.6) or (4.7). For small values of r these bounds are
close to given in (5.11). The details are not given since it is easily seen that these
simply obtained estimates have a disadvantage for larger values of r. The denominator
is the difference between the squares of the natural frequencies, see also (4.10) and
(4.11). Better results would be expected if the difference were between unsquared
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frequencies. A more sophisticated choice of Si , • • • , <S4 in (4.3) leading to such an
estimate is

S1 = J2Kl/2n1 , S2 = J\J2K\/2Q.:\ Sa = JJC;/2Q2 and S, = JUiK\/2^\

The determinant of (4.3) vanishes when

s4 - 2as2 + b = 0, s = cox(Hv -

a = 2C1C2 + 2F1F2 +

b = CyC.FJM - C.Fjml - C2F2)(0„fi,)_1-
The result is thus rather complicated. The study of special cases, e.g. when the quantities
in (5.3) are all equal, reveals that the consideration of a variable rolling velocity in
many cases gives almost the same estimates of allowed rolling velocities as the con-
sideration of steady roll only.

6. Non-constant coefficients in the equations of motion.
6.1. When the coefficients of (1.1) and (1.2) are non-constant, the application of

Ljapunov's method offers some theoretical advantages. A linear system x' + Ax = 0
may be unstable when A is not constant, even if all the characteristic values of A have
positive real parts. Hence Theorem 2 does not hold for non-constant coefficients in (1.2).

This point can be illustrated in connection with a transformation of (1.2). Let the
matrix (1.3) be the sum Ax + A2 of a constant part At and the part /12 containing the
Ms-terms. The substitution X = GY in (1.2) yields

Y + ((?-'(?• + G-'A^Y + G^AfiY = 0. (6.1)
The second term vanishes if the substitution is

cos 5 sin 8

-sin S cos 5.

x2

1^4.

a cos bS c sin b8

-a sin 65 c cos bd
(6.2)

with 8 — / cox dx, a = K\/2, c = K\/2 and b = ac. It is easily seen that (1.2) and (6.1)
are both stable or both unstable if they are connected through (6.2). However, Ai and
G~1A1G have identical characteristic numbers, equal to the characteristic numbers for
A when ux = 0. These numbers are positive, but (6.1) cannot always be stable according
to Theorem 2.

6.2. Let all the coefficients, except Kt and K2, of (1.2) be allowed to vary with
t and X. We can still use (2.2) and (2.3) and the arithmetic in 3.1. However, there is one
point to consider. The forms (2.2) and (2.3) are connected through (2.1) only if q is a
constant. The condition (3.3) gurantees that the intervals (q-i , q2) and (q3 , q4) have
common points, but not that a constant q is among these points. After checking that
(3.3) holds, it remains to consider the question just mentioned. One approach is outlined
in the next paragraph.

6.3. When Klt K2 and/or q are non-constant differentiable functions, the form

| | (?x,)

should be added to the form (2.3) to make (2.1), (2.2) and (2.3) compatible. The correc-
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tion is equivalent to a change of Fi and F2 and in order to find sufficient conditions (3.3),
the derivatives of qKi and qK2 can be replaced by lower or upper bounds.

6.4. The details of a calculation following the outlined methods must be varied
according to the particular case, and it does not seem wise to look for general criteria.

7. Incorporation of some other effects.

7.1. The matrix A defined in (1.3) has a diagonal of zeros. In the deduction of
(1.1) we have neglected some aerodynamic effects under the assumption that they are
small. If these effects enter into the zero-positions of A, they may be of interest even if
they are small. Among the forces and moments given in Ref. [1], the Magnus pitching
and yawing moments and the moments due to rolling combined with pitching and
yawing angular velocities are the only effects of this type. When they are considered, a
matrix

B =

0 0 0 0
0 0 0
0 0 0 0

€2 0 0 0

(7.1)

should be added to A. The sign of the numbers «i, «2 cannot be determined theoretically.
The moments are small in the sense that the | e, | are much smaller than the other co-
efficients.

There is no way to form a positive definite Qi with constant coefficients, such that Q2
is also positive definite for all ux , when B is added to A. We shall therefore use (2.5)
to find quantitative expressions for the obvious statement: The effects can be of im-
portance only if the rolling velocity is high or the stability is poor without the new effects.

7.2. Let Qi be defined by (2.2) and Q2 by (2.1). Let Q22 be the part of Q2 which
corresponds to B in (7.1). The other part Q2I is the form (2.3). The number s" in (2.5)
is — e | wx | if « denotes the largest number of qK2 \ | and qKt | e2 | . We assume that
(3.3) is fulfilled under the assumptions made in Sec. 3. A value of q and a corresponding
positive number p can then be chosen such that the characteristic numbers of Q2i are
all larger than p. From (2.5) we find, using s' = p, that our system is stable if

e | | < p. (7.2)

The inequality (7.2) relates the allowed rolling velocity to the degree of stability and the
size of the new effects introduced.

8. The effect of control systems.

8.1. The interpretations in terms of the natural frequencies and damping factors
in Sec. 5 give rise to the following question. What are the relevant quantities if frequency
and damping are changed by a controlling device?

Merely to illustrate the possibilities of extensions to such problems, a simple situation
will be discussed in this section.

8.2. Let and S2 be the positions of control surfaces, which are assumed to have
no influence on the equations of forces. The equations for x\ and x3 in (1.2) are thus not
changed. The effect of the control system is to add Hi$i to x2 and H252 to a:;, //, being
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positive (constants). We also assume that Si and 82 are connected with x2 and x4 by-
linear equations with constant positive coefficients.

0 + I)51 = "(6l + dl j)X2 End i1 + 021)52 = "(6* + d> |)^

representing a simple controlling device.
Define xs = 5i + a^1 dxx2 and xB = 82 + aj1 d2xi and let q, qx and q2 be positive num-

bers. The form

Qi = Xi + xl + qK2xl + qK^l + qxxl + q2x\
yields through (2.1) a form Q2 which is independent of cox . The secular equation for Q2
splits up into two third degree equations, one of which is

= 0, (8.1)
2 Ci — s J i — qK2Ei 0

Ji - qK2E1 2qK2F* - s G, - qK.iHl

0 G\ — qK2Hi 2aJ"1 — s

where G, = qiC^'(aibi — di) and F% = dj .

The other equation takes the same form.
It is found that all the solutions s of (8.1) are positive if and only if

HCiqK2F* - (Ji - qK2Etf}q, - - qK.Htf > 0. (8.2)
It holds that when Gx equals zero w„ is fed back to 5, without filtering, when (7,

is positive the feedback is through a lag filter and when Gj is negative it is through a
lead filter. Only the first two possibilities are considered. If G,- = 0 the change of F{
into F% corresponds to the change of the natural frequencies and damping factors by the
controlling device. When Gx is positive the interpretation is somewhat more complicated
and will not be discussed here.

We return to (8.2) and observe that it is necessary to have {• • •} > 0. If the first
term is positive and G, non-negative there is, on the other hand, a positive value for qt
such that q^OiC^Gi — qK2Hi)2 equals zero or is as small as we please and hence (8.2)
is fulfilled.

The conditions that AC1qK2F*i < (/, — qK2E^)2 and 4:C2qK1F% < (J2 — qKxE^f
are thus both necessary and sufficient for Q2 to be positive definite for suitable values
of and q2. If only the F{ are replaced by F% , i = 1,2, we can then use the deductions
in 3.1. In particular (3.3) and Theorem 1 hold with this change of Fx and F2.
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