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SERIES EXPANSIONS IN TERMS OF THE TEMPERATURE
FUNCTIONS OF PORITSKY AND POWELL*

BY

D. V. WIDDER
Harvard University

1. Introduction. In a paper by H. Poritsky and R. A. Powell [1] certain solutions
Tn(x, t), n = 0, 1, 2, • • • , of the heat equation

d2u(x, t) _ du(x, t)
dx2 ~ dt (1.1)

were defined. Explicitly, for x > 0 and t > 0

Tn(x, t) = 2 f k(x, t ~ V)z] dy, (1.2)
JO if"

where k(x, t) is the fundamental solution

k{x, t) = (47r/)~1/2 exp (—x2/it), t > 0.

Those authors show that

T (0 t) =    —(1 3)1l) T1/2(2n + 2)! '

so that Tn(x, t) may also be expressed by the integral

Tn(x, t) = h(x, t - y)Tn(0, y) dy, ^ ^

where

h{x, t) = j k(x, t) = —2 ~ k(x, t), t > 0.
f OX

Thus T„(x, t) may be interpreted as the temperature of a semi-infinite bar (along the
positive a:-axis), initially (t = 0) at zero temperature, the finite end of which is main-
tained at temperatures given by the function (1.3).

We define here the related functions

Un(x, t) = [ h(x, t - y)zr.dy, x > 0, t > 0, (1.5)
Jo 'f' •

and inquire what solutions of the heat equation (1.1) can be expanded in series of the form

u(x, 0=2 {anTn{x, t) + bnUn(x, /)}• (1-6)

*Reeeived July 10, 1961. This work was supported (in part) by the Air Force Office of Scientific
Research, under Contract AF 49(638)-574.
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We are able to find necessary and sufficient conditions of several types which will insure
the validity of such expansions. For example, Eq. (1.6) holds for 0 < t < r if and only if

u(x, t) = [ k(x + y, t)f(y) dy,
Jo

where f(y) is an entire function of growth (2, 1/(4r)). See Sec. 3 for the definition of such
functions.

2. Properties of Tn(x, t) and UJx, t). Let us first find the Laplace transforms
of TJx, t) and UJx, t) with respect to the variable t. We prove

Theorem 1. For x > 0, Re s = a > 0

I exp (—si) TJx, t) dt = exp (—xsW2)/sn+3/2, (2.1)
J 0

f exp (—st) UJx, t) dt = exp (—xs1/2)/sn+1. (2.2)
J 0

Since Tn and Un are defined as convolutions, the above transforms are obtained by
multiplication of the following:

f exp (—st) h(x, t) dt = exp (—xs1/2), x > 0, a > 0
J 0

(see p. 288 of [3]),

f exp (-st) f+1/2 dt = r(-+y2) , <r > 0,
Jo «

f00 7?!
/ exp (—st) C dt = -jtt , <7 > 0.

Jo S

The absolute convergence of all integrals involved insures the validity of the composition
theorem.

Thus far the functions T„ and Un are defined for positive x only. We now define
them for negative x by analytic continuation. Clearly this analytic continuation is not
given by the integrals (1.4) and (1.5) since h(x, t) is an odd function of x and since, as a
consequence, the functions defined by those integrals suffer discontinuities at x — 0.
We proceed by replacing (1.4) and (1.5) by other integrals of equal value for x > 0 but
which are analytic for - co < x < °o.

Theorem 2. For x > 0, t > 0
r" v2n+1

Tn(x, t) = 2 /c(x + y, t) dy (2.3)

Un(x, t) = 2 £ Jc(x + y, t) dy. (2.4)

The proofs of the two formulas are similar, so that we may confine attention to (2.3).
By the uniqueness theorem for Laplace transforms it will be sufficient to show that both
sides of Eq. (2.3) have the same transform. For the left hand side we already have the
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result in Eq. (2.1). For the right hand side we may use the known transform (formula
(6.2) of [3])

/; exp (—s£) k(x, t) dt = 8X^ ̂  ^—- , 0 < a <<*>, 0 < x < <» .

Thus

2 £ exp (st) dt £ k(r + y, t) ^, dy

-fJo

y2"+1 exp [-(x + y)8w2] _ exp (~xsi/2)
(2» + l)! s1/2 dy ~ sn+3/2 '

The interchange in the order of integration is justified by Fubini's theorem, the integrand
of the integral (2.3) being positive.

Since the integrals (2.3) and (2.4) are familiar Weierstrass transforms they may now
be used to define Tn(x, t) and U„(x, t) as solutions of Eq. (1.1) for all real x. (See, for
example, Theorem 3.3 of [4]).

3. Entire functions. For the reader's convenience, we recall here some facts about
entire functions in a form in which we shall use them. An entire function f(z) is said to
be of growth (p, a) if it is of order ^ p. In addition it is stipulated that when the equality
holds, then the type of /(z) is ^ a. For example, the functions 1, z, sinh z, cosh 3z2, z
exp z2 are all of growth (2, 3). A function f{z) of growth (p, a) satisfies for every e > 0
the relation

/(«) = 0(exp (a + e) | z |"), | z | -> 00 •

Let

/(*)=£ J /*(*)= (3-D
n = qU\ » = 0 ill

The rate of growth of either function can be characterized in terms of | c„ |. The results
needed are:

Theorem 3.1. The functions (3.1) are of growth (2, <r) if and only if

lim sup | c„ \2/n/n 2c/e. (3.2)
n—»co

Theorem 3.2. The functions (3.1) are of order 1 and of type <j if and only if

lim sup | c„ |1/n = a. (3.3)
n-» oo

4. The principal expansion criterion. We treat expansion in terms of the sets
T„(x, t) and Un{x, t) separately. The main theorem will then be obtained by combining
the two results.

Theorem 4.1. A function u{x, t) has the expansion
CO

u(x, 0=2 anTn(x, t), (4.1)
n=0

convergent for 0 < t < r, if and only if

u(x, t) = f k(x + y, t)g{y) dy, 0 < t < r, (4.2)
Jo
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where g(y) is an odd entire function of growth (2, 1/4r) defined by the series
2»+1~2 £ (5+iji- <4'3)

We prove first the sufficiency of the condition (4.2), (4.3). If it is satisfied, substitu-
tion of the series (4.3) in the integral (4.2) formally gives

CO

u(x, t) - Yj 0-nT„(x, t).
n = 0

Here we have used Eq. (2.3). Since Tn(x, t) is positive for t > 0 the term-by-term inte-
gration will be valid if

f k(x + y, t)g*(y) dy < » . (4.4)
Jo

Here g*(y) is obtained from g(y) by changing an in (4.3) to | an |. Since g(y), and hence
g*(y), has growth (2, l/4r) we have for any positive 6 less than 1

g*(y) = 0(exp [y*/(4r0)]), y-> 00. (4.5)

Since k(x + y, t) behaves, as y —> oo, essentially like exp (—y2/At) it is clear from (4.5)
that the inequality (4.4) holds for any positive t < r. This completes the proof of the
sufficiency of the condition.

Conversely, assume the expansion (4.1). In particular we have for x = 0 from (1.3)
that

„rn a a ft' V'2 V1 a"(4^"' l) - h (2n + 2)! •
Since this series is assumed to converge for 0 < t < r we have by Stirling's formula that

lim sup | a„ \Un/n ^ l/(er). (4.6)
n-* co

From this inequality we can infer by use of (3.2) that g{y) and g*(y), as defined by (4.3),
have growth (2, l/(4r). Since only odd powers of y are involved we may replace n by
2n and b2n by a„ in formula (3.2). It then becomes (4.6) with a = 1/(4r). And now the
formal integration of series (4.3) effected in the earlier part of this proof again becomes
valid for 0 < t < r under the present assumptions. This completes the proof.

The companion result for expansions in terms of the Un(x, t) is the following.

Theorem 4.2. A function u(x, t) has the expansion

u(x, 0 = Z KUn(x, t), (4.7)
n = 0

convergent for 0 < t < r, if and only if

u(x, t) = f k(x + y, t)h{y) dy, 0 < t <r, (4.8)
Jo

where h(y) is an even entire function of growth (2, 1/ (4?•) defined by the series
co 7 2 n

^ = 25lo! (4-9)
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The proof is similar to that for Theorem 4.1 and is omitted.
By combining the two foregoing theorems we obtain the main result.

Theorem 4.3. A function u(x, t) has an expansion

u(x, t) = {anTn(x, t) + bnUn(x, t)}, (4.10)
n = 0

convergent for 0 < t < r, if and only if

u(x, t) = f k(x + y, t)f(y) dy, 0 < t < r,
Jo

where j(y) is entire of growth (2, l/4r). Here

2a„ = /(2n+1,(0), 2b„ = /<2n>(0), » - 0, 1, 2, ••• .

It is clear that the sum of a series (4.10) must satisfy (1.1) for 0 < t < r, and that
u(x, 0+) = 0(0 < x < oo ), u(x, 0+) = f(—x)(— < x < 0),

, , 1 -A an(n + 1)! (4/)n+1 -A bj"
(2n + 2), + S"ST"

S. Expansions valid for 0 < t < <». Let us restrict attention in this section to
expansions in terms of the functions U„(x, t). Analogous considerations would apply
to series in the Tn(x, t).

Theorem 5.1. A function u(x, t) has an expansion (4.7) convergent for 0 < t < °°
and with

lim sup | bn \Wn = q2 (5.1)
n-»co

if and only if

u(x, t) = f k(x + y, t)h(y) dy, 0 < t < «,
Jo

where h(y) is an even entire function of order 1 and type q defined by the series (4.9).
As in Theorem 4.1 the proof depends on the validity of the term-by-term integration

of series (4.9) after multiplication by k(x + y, t). This process is clearly valid
for 0 < t < od if h*(y) is of order 1. In one-half of the theorem this is part of the hy-
pothesis. In the other half it is a consequence of (5.1). For, since series (4.9) involves
only even powers of y we may replace n by 2n in formula (3.3), with c2n = b„ . Then
(5.1) implies

lim sup | bn |1/2n = q,
n—*co

and the proof is complete.
The criterion for the validity of the expansion (4.7), (5.1) may also be given a neat

form in terms of the Laplace transform of u(x, t).

Theorem 5.2. A function u(x, t) has an expansion (4.7) convergent for 0 < t < <»,
0 < x < oo, and with

lim sup | bn \1/n = q (5.2)
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if and only if for x > 0, Re s > 0,

f exp (—st) u(x, t) dt = exp (—sx1/2)F(s), (5.3)
Jo

where F(s) is analytic for | s \ > q, not for | s | ^ q, and is defined by the series

m - z -hr- (5.4)
n = 0 o

Assume first Eq. (4.7), the coefficients satisfying (5.2). Multiply both sides by
exp — st and integrate with respect to t. By (2.2) the result is (5.3), (5.4) provided

f exp (—at) Z I K I Un(x, t) dt < oo
JO n=0

(<t = Re s). Here we have used the fact the Un(x, t) ^ 0. Equivalently we may show that

<».
n = 0 O"

This is clearly true for a > q by (5.2). The analytic character of F(s) follows from the
fact that the radius of convergence of the power series Z is precisely 1 /q by virtue
of the hypothesis (5.2).

Conversely, assume Eq. (5.3). Then (5.2) also follows from the analytic character
of F(s). It is a familiar fact that F(s) is the Laplace transform of the function

m = r ¥• (5-5)
»-0

Moreover, when x > 0, exp — x Vs is the transform of h{x, t). That is, the product on
the right of (5.3) is the transform of the convolution of the function F(t) with h{x, t).
By the uniqueness theorem for Laplace transforms

u(x, t) = [ h(x, t - y)F(y) dy. (5.6)
Jo

Now substitute the series (5.5) in the integral (5.6) and use the definition (1.5) to obtain
CO

u(x, 0=2 l>nUn(x, t).
n = 0

The formal substitution will be valid if

E I M [ h(x, t - y)z\dy = E I I Un(x, t) < CO. (5.7)
n=0 «'0 " ! » = 0

But forO<x< oo; 0 < t < oo

0 < Un(x, t) < ~ I h(x, t - y) dy = ^ erfc [x/(4t)U2],
ill J 0 IV .

so that the series (5.7) is dominated by one which converges by (5.2).
Since the condition (5.3) restricts the function u(x, t) only for x > 0, the series (4.3)

cannot be expected, in the first instance, to define u(x, t) for x < 0. But the terms of the
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series are defined for x < 0, and the series does in fact converge there, so that u(x, t)
could be defined by analytic continuation for negative x.

6. Examples. Let us illustrate the three principal expansion theorems by examples.
For Theorem 4.2 choose

u(x, t) = exP ^X_^Atyf2At^ erfcz[4/(l - 4At)]~l/2.

u(0, t) = (1 - 4Aty1" = ± MiAty, (6.1)
n = 0 \ i* /

K = A\2n)\/n\,
Ann2n

Kv) = 2 2 ~(2ny\ = 2 exP

We see by inspection that h(y) has growth (2, A) and that the power series for u(0, t)
converges for | t | < 1/4A as predicted by the theorem. This example shows that the
integral (4.8) may converge in a larger region than the series (4.7). If A < 0 the integral
converges for all positive t whereas the series (6.1), and hence (4.7), diverges for t= 1/(4A).

For Theorem 5.1 choose bn = b2n, q = b > 0. Then

h(y) = 2 cosh by, w(0, t) = exp (b2t), b > 0.

Clearly the function h(y) is of order 1 and type b, as predicted. The function u{x, t) is
known explicitly (see p. 45, Eq. (9) of [5]):

u(x, t) = %{vb(x, t) + v-b(x, /)} exp (b2t), (6.2)
where

vb(x, t) = exp (bx) erfc (^172 + btu'^j- (6.3)

Finally, to illustrate Theorem 5.2 we may compute the Laplace transform of the
function (6.2).

From formula (12), p. 177 of [6] we have
r°° , ,,2 A . jS 1± exp (— bx — xs1'2)J exp (—st) exp (6 t)vb{x, t) at = ^  '

Replace b by — b in this formula and thus by addition obtain

exp (—st)u(x, t) dt = ———~ = exp (—xs1/2) ̂  4+1*
S 0 n_o S

Here q = b2, and F(s) is analytic for [ s | > b2.
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