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AN OPTIMIZATION OF THE PHASE-PLANE-DELTA METHOD
FOR THE SOLUTION OF NON-LINEAR DIFFERENTIAL EQUATIONS*
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Abstract. An improvement to the phase-plane-data method of solving non-linear
differential equations of the type d2x/dt2 + H(x) = 0 is discussed. This improvement
provides a means of determining an optimized value of the parameter p, frequency.
In the conventional phase-plane-delta method the parameter p is chosen either arbitrarily
or as the coefficient of the positive linear term. The phase-plane trajectory and period of
oscillation can be more readily determined by this method than by the conventional
phase-plane-delta method.

Introduction. Graphical techniques provide simple and rapid means of evaluating
the solutions of certain non-linear differential equations. Depending on the extent to
which the techniques are carried these graphical solutions will provide varying degrees
of qualitative or quantitative information. The phase-plane-delta method, hereafter
referred to simply as the 5-method, as described by Jacobsen [1], is a simple graphical
technique with good accuracy characteristics. However, the results obtained by the
method theoretically approach those of an exact solution only as the size of the individual
steps employed in the solution decreases and consequently the number of such steps
increases. This requires additional time and effort thereby removing a degree of simplicity
so desirable to graphical techniques. Consequently, in a later discussion [2] of this
technique, Jacobsen and Ayre suggest that the use of larger steps would in some cases
give results of satisfactory accuracy. It is this point that the authors have herein con-
sidered. By allowing the value of frequency, p, to change from interval to interval it
is possible to introduce an optimization procedure which results in better accuracy for a
given number of steps. This optimization procedure also overcomes certain difficulties
associated with the 5-method.

Discussion of Technique. The 5-method is applicable to non-linear differential
equations of the type:

= ° (1)

but the refinement is to be considered only in relation to equations of the type

m § + H{x) = 0. (2)

Following the usual procedure [2] of the 5-method, a positive linear term in x is either
separated out of the function H (x) or added to it to give

m + ^ + ^(x) = 0. (3)
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Using the usual phase-plane coordinates (1 /p dx/dt, x) Eq. (3) becomes

+ v(x + 8) = 0, (4)

where

v2 = i and 8 = lh&

giving the values of p and 5 to be used in the 5-method of graphical solution.
Now recall that the basic assumption of the 5-method is that, for small changes of

the variable comprising 5, the value of 5 remains essentially constant. It is evident that,
when large steps are used in carrying out the solution, this is not strictly true; but it is
more and more satisfied as the size of the steps decreases. Therefore, the authors have
established a refinement of this technique; namely, that the change in 5 with respect to
the variable x is to be a minimum over the interval of the step. This gives the condition

|<»-°. ©

It will be shown, in the following examples, that by using this criterion certain important
improvements will arise in the application of the 5-method, namely, (a) the value of p
used in the solution will depend not on the coefficient of the linear term alone but will
be affected by the form of h(x) and (b) it overcomes the difficulty associated with the
choice of a value of p when a positive linear term in x does not occur in the original
equation.

Applications. As a general presentation of this idea consider the second order
non-linear differential equation in which the restoring force is described by a function
f(x) that is specified either graphically or analytically and may or may not contain a
linear term in x

§ + m = o. (6)
Then following the usual steps in the procedure of the 5-method, it is necessary first to
introduce a fictitious linear term in x

d % + p2x — p2x + f(x) = 0 (7)dt
so that

where

+ p2(x + 5) = 0, (8)

<5 = A [f(x) - px\. (9)

Upon applying to Eq. (9) the condition expressed by Eq. (5) we find

1=0-
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Hence giving

p2 = £ [/(*)]• do)

Next it is desired to obtain average values of p and 5 to be used for a particular step;
that is, an interval from to x2 of the solution. The average value of p is determined

(P')av = * [ (P2)av dX- (11)
•^2 Jx i

Substituting Eq. (10)

{p2)- = ^=^L £[Kx)] dx (i2)
gives

(p2)»v = \j(x2) - /(zi)]/[>2 - xt]. (13)

Similarly, the average value of 8, using Eq. (9) is

5»v = fx [/(^ - (p2)avX] dx, (14)

s" ■ (A.fe - «,) ,w dx - ST^J 1 dx- (I5>
l rx>

5av = (p'Ufe - sj J ^ dx ~ ^ + ^ <-16')

Using Eqs. (13) and (16) we can calculate the various values of S and p required to
construct the approximate phase-plane trajectory. It is apparent that if f(x) is given
analytically the integral in Eq. (16) can be evaluated analytically or numerically, and
if j(x) is given as an experimentally determined relation the integral will need to be
evaluated by some graphical procedure. Thus jix) need not be given in an analytical
form.

In order to illustrate the procedure for applying this refinement to the 5-method and
to point up the advantages that it provides in the phase-plane solution, let us consider
two examples. In each of these examples the results, using the usual procedures of the
5-method, will be compared with results obtained using the refinement. Also, the com-
parison of solutions will be shown employing one, two and four steps in one quadrant of
the phase-plane. Only one quadrant is needed since these examples have been chosen so
that their phase-plane trajectories are symmetric about the x and l/p(dx/dt) axes.

I. Consider:

~ + x + 4x3 = 0 (17)

with the initial conditions: at t = 0, x = 1.0

S-o
for which, using Eq. (13)

Pav = 1 + 4(x? + xLx2 + xl) (18)
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and using Eq. (16)

Sav = [2(4 + xl) + (1 - pi)]. (19)
av

For a one-step solution (the number of steps refer to the number in one quadrant of the
phase-plane) the interval would be 1.0 > x > 0.0 giving

Interval

1.0 > rs > 0.0 5.0 -0.20

The construction of the approximate phase plane trajectory is shown in Fig. 1 and is

X.-8

A 6 = 1.82 RADIANS
I

0.8

0.6

Fig. 1. Construction of cPx/dt2 + x + 4x3 = 0 by the optimized 8-method in one-step.

seen to be the same as that for the usual 5-method construction. From which the period
for one cycle is, by using the usual expression

AT = - Ad (20)
V

found to be
T = 3.28 seconds.

For a two-step solution

Interval

1.0 > x > 0.5

0.5 > x > 0.0

Pa,

8.0

2.0

-0.42

-0.06



1962] SOLUTION OF NON-LINEAR DIFFERENTIAL EQUATIONS 71

L(—)
-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 P dt

Fig. 2. Construction of <Px/dt2 + x + 4x3 = 0 by the optimized 5-method in two steps.

The construction of the approximate phase-plane trajectory is shown in Fig. 2. Here
again the construction is the same as that for the usual 5-method construction with the
exception that the value of Pav varies from one interval to the next and hence the velocity
at the end point of the first interval must be calculated using pal, = (8.0)1/2 and then
replotted as the initial point of the second interval by using p,„ = (2.0)1/2. From which
the period for one cycle is found to be

T = 3.20 seconds.

This description of the two constructions along with knowledge of the 5-method is
sufficient to describe the optimized procedure; therefore, in the conclusion of this ex-
ample and the discussion of two other examples only the tables for and 8a, along with
the resulting period will be included.

For the four step solution

Interval

1.00 > x > 0.75

0.75 > x > 0.50

0.50 > x > 0.25

0.25 > x > 0.00

10.25

5.75

2.75

1.25

-0.52

-0.34

-0.15

-0.01

and the period determined from the construction is found to be

T = 3.18 seconds.
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A numerical solution of the phase-plane trajectory can be obtained by integrating this
non-linear differential equation once. Also the exact period can be calculated from an
elliptic integral to be

T = 3.18 seconds.
Table I below compares the results of the periods obtained by this optimized technique
with the usual technique which would use p2 = 1.0 in this particular case, since j>"
would be understood to be the coefficient of the linear term in x. Figure 3 shows a com-

TABLE l
Comparison of the Optimized Procedure and Conventional Procedure

of the S-Method for dH/dt1 + x + 4x3 = 0

Number of
Steps in One
Quadrant

Period (seconds)

Exact

3.18

Conventional

4.19

3.53

3.14

%
Error

32

11

Optimized

3.28

3.20

3.18

%
Error

-1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2

Fig. 3. Phase-plane trajectory of d^x/dt2 + x + 4x3 = 0.

parison of the phase-plane trajectories determined by these two techniques with the
numerically determined trajectory. Two steps were used in the graphical solutions.
II. Consider

~f2 + x3 = 0 (21)

with the initial conditions: at t = 0, x = 2.0, dx/dt = 0.0 which represents the case of a
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non-linear differential equation where the positive linear term is missing and hence the
value of p2, for the conventional 5-method, cannot be determined but would have to be
estimated. The procedure of the optimized technique, on the other hand, gives a direct
method of determining this value by using Eq. (13)

ply = [«S — x\]/[x2 - 2a] (22)
and using Eq. (16)

<5av = (x2 + x0[(a:2 + x?)/4plv — §]. (23)

The values required for the construction of the phase-plane trajectories of this equation
are given below:

Interval

One Step
Solution

Two Step
Solution

Four Step
Solution

2.0 > x > 0.0

2.0 > x > 1.0
1.0 > x > 0.0

2.0 > x > 1.5
1.5 > x > 1.0
1.0 > x > 0.5
0.5 > x > 0.0

4.0

7.0
1.0

9.25
4.75
1.75
0.25

-0.50

-0.96
-0.25

-1.16
-0.82
-0.48
-0.13

The 5-method graphical solutions, constructed using the values above, are compared in
Table II below with values obtained from a solution assuming p2 = 1, and with an exact
numerical solution. Figure 4 shows a comparison of the phase-plane trajectories de-
termined by these two techniques with the numerically determined trajectory. Once
again, two-steps are used in the graphical solutions.

TABLE II
Comparison of the Optimized Procedure and Conventional Procedure

of the 8-Method for d2x/dt2 + x3 = 0

Number of
Steps in One
Quadrant

1

Period (seconds)

Exact

3.71

Conventional

4.19

3.81

%
Error

32

13

Optimized

3.82

3.74

3.72

%
Error

In both of the examples illustrated above, the form of f(x) was given analytically.
However, it is obvious that this need not be the case and that f(x) can be described
graphically. Such an example has not been included as its discussion would not introduce
any new facets of the technique and furthermore could not be solved analytically to
show a comparison of results as was done for the examples included. However, the
authors have applied the optimized o-method to such problems and found the technique
to be very advantageous in that it gave a faster convergence to the period.
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X

-2.0 -1.0
Fig. 4. Phase-plane trajectory of cpx/dt2 + xz = 0.

Discussion of convergence. The convergence of the period to the exact period is
seen in the cases illustrated to be significantly more rapid when the optimized 5-method
is used. However, discussion of this result can only be empirical and drawn from the
authors' experiences with several examples. From these results it appears that this rate
of convergence is related to the area between the actual curve of the function f(x) and
the approximating straight line segments determined by plv. Thus, it is always desirable
to distribute the number of segments into which the solution is to be divided so that
the area between the straight line approximation and the actual function /(x) is a mini-
mum. The area which is to be minimized is shown shaded in Fig. 5. It will be noted,
recalling Eq. (13), that the slopes of these line segments are then p2„ for a particular
interval. As further illustration of this point, this last example is included in which the

x
Fig. 5. Diagram showing the criterion for the choice of the straight-line approximations.
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choice of intervals is taken so as to reduce continuously the area between the approxi-
mating straight-line segments and the actual function curve.

Consider

§ + /(*) = o
with the initial conditions at t = 0, x = 2.5, dx/dt = 0.0 and where

f (X)

0.5 1.0 1.5 x

In Table III below are shown five cases involving successively improving approximations

TABLE III
Error Obtained for Successively Improving Approximations to the

Actual Restoring Force Function f(x)

Case Interval

Period (seconds)

Exact Optimized
%

Error A A/A

1.5 > x >0.0 1.425 1.460 2.4 0.875

1.5 > a; > 1.375
1.375 > x > 0 .0 1.442 1.2 0.656

1.5 > x > 1.25
1.25 > x > 0 .0 1.404 1.5 0.438

1.5 > x > 1.125
1.125 > x > 0.0 1.415 0.7 0.219

1.5 > x > 1.0
1.0 > x > 0.0 1.425 0.000
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to the restoring force function, f(x). In this table is also shown the ratio of the difference
between the area under the curve, consisting of the approximating straight-line segments,
and the area under the curve of the actual restoring force to the area under the curve
of the actual restoring force. This is designated as A A/A. Similar summaries are shown
in Tables IV and V below for the two examples previously discussed. From the results

TABLE IV
Error and Values of A AIA for the Various Approximations

of the Optimized i-Method for d^x/di1 + x + 4a;3 = 0

Case Interval

Period (seconds)

Exact Optimized
%

Error A /A

1.0 > x > 0.0 3.18 3.28 0.67

1.0 > x > 0.5
0.5 > x > 0.0 3.20 0.6 0.17

1.0 > i > 0.75
0 .75 > x > 0 .50
0.50 > x > 0.25
0.25 > x > 0.00 3.18 0.04

TABLE V
Error and Values of AA/A for the Various Approximations

of the Optimized S-Method for d^x/dt1 + %3 — 0

Case Interval

Period (seconds)

Exact Optimized
%

Error A A/A

2.0 >x> 0.0 3.71 3.82 1.00

2.0 > x > 1.0
1.0 > x > 0.0 3.74 0.8 0.25

2.0 > x > 1.5
1.5 > x > 1.0
1.0 > x > 0.5
0.5 > x > 0.0 3.72 0.06

shown in these tables it is seen that when the straight line segments approximate the
curve so that A A/A is 25-30%, the error experienced in the period is less than 1%.

Conclusions. The examples shown are typical of the experiences of the authors in
applying this optimized o-method to the graphical solution and has been found to have
the following advantages.
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1. The period calculated using the optimized 5-method results in a value better
approximating the exact value of the period than the conventional 5-method.

2. In those cases where there is not a linear term in the non-linear differential equation
to give a value of piv to be used in the conventional 5-method or where the magnitude
of the non-linearity is of such a size as to make the use of the frequency as specified by the
linear term unrealistic the optimized 5-method provides a direct method of calculating an
appropriate value of piv.

3. The accuracy that can be obtained for the period with the optimized 5-method
has been empirically found to be better than 1 % when the straight line segments approxi-
mate the actual restoring force function to within a value of 25-30%, for the ratio of
AA/A.

4. The authors also have observed that the phase-plane trajectories determined by
the optimized 5-method have less distortion from the actual trajectory than those
determined by the conventional 5-method.

5. Finally, a graphical technique to be useful should also be relatively simple. The
experience of the authors again in this instance has been that no appreciable complexity
is introduced by the precalculation that must be performed and in fact this is far offset
by the reduction in the number of steps required to determine the period and phase-
plane trajectory to some particular degree of accuracy.
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