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BUCKLED STATES OF CIRCULAR PLATES*
BY

HERBERT B. KELLER, JOSEPH B. KELLER AND EDWARD L. REISS
Institute of Mathematical Sciences, New York University

1. Introduction. We consider a thin elastic plate of circular shape and constant
thickness in static equilibrium under a constant compressive thrust applied at its edge.
One possible equilibrium configuration of the plate is a state of uniform compression in
which the plate remains plane and contracts radially. It has been observed that this
state is unstable when the edge thrust is sufficiently large and then other states of equi-
librium occur. They are called buckled states since in them the plate is buckled—i.e. de-
flected out of its plane. These states occur in pairs in which the deflections are in opposite
directions. We shall prove that for every positive integer n a pair of rotationally sym-
metric buckled states with n — 1 internal nodes exist when the thrust is slightly larger
than the wth critical value (i.e. eigenvalue) determined by the linear buckling theory.
Our analysis is based upon the non-linear von Karman equations of plate theory [1].
We treat both the case in which the edge is clamped and that in which it is simply
supported.

The rotationally symmetric buckling of a simply supported plate was previously
investigated by K. 0. Friedrichs and J. J. Stoker [2]. They showed that the unbuckled
state is the only equilibrium configuration when the thrust is less than or equal to the
first eigenvalue of the linear buckling theory. They also showed that there is a pair of
buckled states with no internal node for all greater values of the thrust and that no
other states exist when the thrust is less than or equal to the second eigenvalue. It is
reasonable to conjecture, on the basis of experience with the elastica and other problems,
that in addition to the unbuckled state there are n pairs of rotationally symmetric
buckled states when the thrust is greater than the nth and less than or equal to the
(n + l)si eigenvalue of the linear problem. One pair has no internal nodes, another pair
has one internal node and so on up to n — 1 internal nodes. The results of Friedrichs
and Stoker prove part of this conjecture and our result proves another part, but the
conjecture is still not completely proved. A similar conjecture has been proved for
certain other non-linear problems by I. I. Kolodner [3] and G. H. Pimbley [4].

Our method of analysis is essentially the bifurcation theory devised by Poincare
to prove the existence of periodic solutions of non-linear initial value problems. This
method can also be applied to non-linear boundary value problems. The present paper
furnishes two such applications. It was previously employed by J. B. Keller [5] to prove
the existence of buckled states of a non-uniform column.

When the PoincarS theory is applicable to a non-linear boundary value problem it
can frequently be extended to justify a perturbation solution. Thus in the present paper
we justify, in a simple manner, perturbation expansions about each of the eigenvalues
of the linear theory. Previously Friedrichs and Stoker [2] employed the rather compli-
cated Schmidt bifurcation theory for this purpose.
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2. The boundary value problem. Let the plate have radius R, thickness h, Youngs'
modulus E, Poisson ratio v and be subjected to a uniform compressive edge thrust
/ > 0. Assuming rotationally symmetric deformations, we denote by w(r) the normal
displacement of the unstrained midplane and by $(?•) the Airy stress function. We then
introduce the dimensionless quantities x, X2, U(x) and V (x) defined by

_ = L _ 12(1 - R2
R E h2''

TT(„\ nn 2A1i/2 R dw(r)U(x) = -[3(1 - f)] -r—r- >
(2.0)

v(x) = _12(1{ ) ER h2 L dr ' _
Then the von Karman equations [1] can be reduced to the form

LU(x) + \2xU(x) = — V(x)U(x), (21)

LV(x) = V\x).

Here the differential operator L is defined as

T didL- = x  x.dx x dx

In the integration which led to (2.1) an arbitrary constant was eliminated by means
of the assumed regularity and symmetry of the stresses and displacements at the center
of the plate. In addition the symmetry implies

U(0) = 0, 7(0) = 0. (2.2a)
If the edge of the plate is clamped we have

17(1) = 0, 7(1) = 0. (2.2b)

The second condition follows from the specification of the radial membrane stress at
the edge. The simply supported edge is treated in Appendix II.

Equations (2.1) and (2.2) form a boundary value problem for the determination of
the rotationally symmetric equilibrium states of the clamped plate. One solution of this
problem, valid for all X, is the trivial one, U(x) = V(x) = 0. This corresponds to a state
of pure radial compression of the plate which we call the unbuckled state. If U(x), V(x)
is any other solution of (2.1) and (2.2) for some X (i.e. a buckled state) then it clearly
follows that —U(x), V (x) is also a solution for the same value of X. Thus as we stated
in the Introduction, the buckled states occur in pairs which differ only in the sign of the
normal deflection.

3. Existence of buckled states. The existence of buckled states will now be demon-
strated by means of a classical procedure due to Poincare. For this purpose we consider
the initial value problem:

(a) Lu(x) + X2xu(x) = —v(x)u(x); u{0) = 0, u'{0) = 1; ^ ^

(b) Lv(x) = £u(x) ; u(0) = 0, v'(0) = y.
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Here £ and 77 are arbitrary real parameters. Where no confusion can arise we indicate a
solution of (3.0) by

u(x) = u(X, ?, 17; x), v{x) = v(\, £, 77; x).

In Appendix I we prove the following basic theorem relating to such solutions.

Theorem I. For all finite triples (X, £, 77) a unique solution of (3.0) exists mO^i^l.
The solution is analytic in each of the parameters X, £, and r\.

We now seek values of the parameters (X, £, 17) such that the corresponding solution
of (3.0) satisfies

^(^> vj 1) 0, ^ ^
v(X, £, vj 1) = 0.

It then follows that a pair of solutions of the boundary value problem (2.1) and (2.2)
is given by U(x) = =fcfw(x), V{x) = v(x). To solve (3.1) let us choose the special param-
eter values

£ = 77 = 0.

Then (3.0b) is easily integrated and yields v(x) = 0. Now (3.0a) reduces to the linear
problem

Lu(x) + \2xu(x) = 0; w(0) = 0, u'( 0) = 1.

The unique solution of this initial value problem is

= h x - °'
[j^Xx), X 5^ 0.

Hence w(l) = 0 if and only if

X = X„ = ji,„ , n = 1, 2, • • • (3.2)

where is the nth zero of the Bessel function J, . Of course y(l) = 0 for all X. Thus
solutions of (3.0) with (X, £, 77) = (X„ , 0, 0), which satisfy (3.1) are given by

u(n\x) = u(X„ , 0, 0; x) = J i(X„a;)] n = \ 2 (3 3)

vin\x) = v(\n ,0,0;x) = 0 j

However the corresponding solutions of the boundary value problem (2.1) and (2.2)
all reduce to the trivial (unbuckled) solution: U(x) = ±lju(x) = 0, V(x) = v(x) = 0.
The functions u'"] (x) are just the eigenfunctions of the linear buckling theory and the X^
are the corresponding buckling loads.

We have just shown that the equations (3.1) have a denumerable number of roots
(Xn , 0, 0), n = 1,2, • • • .We shall now try to find other roots in the neighborhoods of
these by using the implicit function theorem. To this end we shall evaluate the Jacobian

J( = d(u, V)
d(X, 77)

at (X, £, 77; x) = (X„ , 0, 0; 1). To find the partial derivatives occurring in this Jacobian,
we note that by Theorem I the solutions of (3.0) are analytic in (X, f, 77). Hence the
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variational equations satisfied by the partial derivatives (U\ , t\) and (u, , i/„) can be
obtained by formal differentiation of the equations and initial conditions in (3.0). Then
with the notation

i?; x) = U\ (x), etc.,
x-x.
£-0
1"0

(3.4)

(3.5)

we obtain from (3.3) and (3.0)

(a) Lux(x) + \lxuy(x) = — [2Xnx + yx(a;)]J'1(X„x), wx(0) = uii 0) = 0;

(b) Lth(x) = 0, rx(0) = vl(0) = 0;
and

(a) Luv(x) + \„xuv(x) = -v^J^Kx), «,(0) = u'JO) = 0;

(b) if,(a;) = 0, i>,(0) = 0, <(0) = 1.

Here we have dropped the superscript for convenience and each system holds for
ft = .1,2, .

From (3.4b) we find that V\{x) = 0 and hence the Jacobian J£ , when evaluated at
each root (X„ , 0, 0), reduces to

From (3.5b) it follows that v„(x) = x and thus J( = ■Ux(l). If Mx(l) = 0 we can conclude
from (3.4) that u^ix) is a solution of the boundary value problem

Luk(x) + \2nxux(x) = —2X„x/1(Xnx), wx(0) = U\(l) = 0.

However for such a solution to exist the inhomogeneous term must be orthogonal to all
non-trivial solutions of the homogeneous adjoint problem. These solutions are J,(\„x)
and so the orthogonality condition requires the vanishing of

2X„ f xJf(X„x) dx.
Jo

Since this is impossible, it follows that itx(l) >*= 0 and hence J£ ^ 0.
Thus the implicit function theorem is applicable and implies that the system (3.1)

can be solved uniquely in a sufficiently small neighborhood of each root X„ , 0, 0. The
solutions are unique functions

X = X„(£), r, = Vn(0, | t | < e„ ; ft = 1, 2, • • • , (3.6)

which satisfy X„(0) = X„, jj„(0) = 0, w(X„(£), £, ?)„(£); 1) = 0 and £, ij„(£); 1) = 0-
Furthermore, by the analyticity of u and v in (X, £, jj), it follows that these functions
are analytic in £ for [ f1 < e„ . In addition it follows from (3.0) that

u{\, £, 17, x) w(X, £, vj, x), ^ ^

v(\, t,vx) = v(\, v; x).
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From (3.7) and the uniqueness of X„(|) and ??„(£), it follows that

X„(-£> = X„© and *,(-© = r,„(Q.

We may summarize our results as follows.

Theorem II. For each positive integer n there exists an en > 0 and two even analytic
junctions X„(i;) and T]n{£) defined for \ £ | < e„ and satisfying

X„(0) = X„ = jun , VM = 0. (3.8)
A one parameter pair of solutions of (2.1) and (2.2) exists for | £ | < e„. They are given by

U(x) = ±fu[X„($), ij„(f) ;®] = ±fM(n) ({, ®), (3 _g)

v(x) = 4X„®, f, *(*);*] = */"'(£,*).

4. Properties of the buckled states. Since X„(£) and ?;„(£) are analytic even functions
of £ satisfying (3.8) they have expansions of the form

X„(£) = X„ + 2 X»,i
n=l,2, ••• (4.0)

'J-© = 0 + X Vn.kZ"1-
k = 1

Moreover, the solutions of (3.0) are analytic in the parameters (X, £, ??) and even in £.
Therefore with the aid of (4.0) the solutions (3.9) have the expansions

x) = J,{\nx) + E u[n\x)f \(n)/
**7 — ° W'^n^J ~T~ Z_j l*k >

n = 1,2, ••• (4.1)
»<n)(£; ®) = o + f:

fc=l

The series in (4.0) and (4.1) converge in some interval | £ | < en .
The coefficients in the above expansions can be determined by using (4.0), (4.1) and

(3.9) in (2.1) and (2.2). The resulting system for k = 1 is:

Lu[n\x) + \2„xu[n\x) = — [2X„X„,1x + i>Jn>(:c)],/i(X„a;),

Wl<»>(0) = Wltn>(l) = 0; (4.2a)

Lv[n\x) = Jl(Kx), i>{n)(0) = ^"'(1) = 0. (4.2b)

The solution of (4.2b) can be written as:

v?\x) = - f' g(x, QJXKZ) di, (4.3)
J 0

where

| o^<^i;
gt*A) = \ (4-4)

I - f) , 0^«<fgl.
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Since \2„ is an eigenvalue, (4.2a) has a solution if and only if the appropriate
orthogonality condition is satisfied. This condition serves to determine X„,i as

[ [ g(%, £)J2i(\£)Jl(Kx) dl~ dx
X„.x =  7 (4.5)

2X„ f xJ'l(\nx) dx
Jo

Here we have used (4.3). Since g(x, £) ^ 0 it follows that X„,! > 0. Then from (4.0) we
may conclude that for some t'n ^ e„ , X„(£) is an increasing function of | £ | in
0 ^ | £ | < e'n . Thus the solutions (3.9) of Theorem II exist for loads X2 ̂  X2 , i.e. loads
greater than the linear buckling loads. Our existence proof applies only for loads slightly
greater than the linear buckling loads, but we conjecture that they actually exist for all
greater loads.

By using (4.5) we can determine the solution u[n) (x) of (4.2a) to within an arbitrary
multiple of Ji(\nx). The multiplying constant can be determined by considering the
system for k = 2. In principle this procedure can be continued to determine the coeffici-
ents X„,4, u[n\x) and v[n\x) for all k = 1, 2, • • • . It is standard perturbation procedure
which has been applied by Friedrichs and Stoker [2] to the simply supported plate
problem for n = 1. In the present case, it is rigorously justified for some interval
X„ ^ X < X„ + 8 by the analyticity properties which have been demonstrated. It was
justified in [2] for n = 1 by means of the Schmidt bifurcation theory.

Finally we observe from (4.1) that for sufficiently small e"

u(">(£; x) = JAnx) + 0(f), 0 g U | < e'n'.
Thus the number of zeros of uM(£; x) in 0 < x < 1 is the same as that of JiQ^x) in this
interval. All of the above results may now be summarized as the

Corollary: For each n = 1, 2, • ■ ■ there exists an e" satisfying 0 < e" 5= «„ such that
X„(£) is an increasing junction of | £ | in 0<| £ \<t" . For any X satisfying X„^X<X„(e")
there exists a pair of solutions of (2.1) and (2.2) such that U(x) = ±£w(n> (£, x) has n — 1
simple zeros in 0 < x < 1.

Appendix I
Proof of Theorem I. With the introduction of the new variables

y{x) = - (xu)', z(x) = - (xv)'
X Jy

the initial value problem (3.0) can be replaced by the equivalent first order system

(a) u' = ~~u + V, u(0) = 0;

(b) y' = —\uv — X2w, 2/(0) = 2;x (4.0)

(c) v' = + z, t>(0) = 0;

(d) z' = ~ u2, 2(0) = 2t,.
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A formal power series solution of (A.O) is given by

u(x) = akx2k+1, y(x) = 2 2 (A; + 1 )akX2k;
k-° k-° (A.l)

v(x) = f: bkx2k+\ z(x) = 2 z (& +1w-,
A = 0 A = 0

provided that
(a) a0 = 1, b0 = v, (A.2)

and

)(A + 2) [X>a* + S a>bk->~\ak+1 —^ 4(fc + 1)(&

£2 *

bk+1 = 4(ft + l)(/c + z) S

►fc = 0, 1,2, ••• . (A.2)

The convergence of these series as well as the analyticity properties will follow from

Lemma 1. Let

m(ri) = 1 + | t] |, M(\, ij, rj) = |[X2 + + £2)].

Then for every finite triple (X, £, 17) the coefficients ah(\, £, 17), bk(\, £, 17) defined in (A.2)
satisfy

| an | ^ mMn, | b„ | g mM"; n = 0, 1, 2, • • • .

Proof. We proceed by induction. From (A.2a) we have | a0 | = 1 ^ m and
I ko | = | | < m and so the result holds for n = 0. Assuming it true for all n ^ k we
obtain from the first equation in (A.2b)

1a*+i I S 4 (k + l)(Jc + 2) \2mMk + J2 m2Mk\ ,
1=0 J

a "^F2j [iTT +4 (fc

= df[x2 +
^ mi'".

Similarly from the second equation in (A.2b)

m2M"
f2

= 4(4 + 2)

< ^ mMt+I- 8M '

< ml'".

The proof of the lemma is now complete.
We introduce

R(h V) ̂
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Then by lemma 1 and comparison with the geometric series mx Xlr,n (x/R)2n, it follows
that the power series for u(x) and v(x) given in (A.l) converge uniformly and absolutely
in every interval

| x | ^ tj) — 5, 0 < 5 < R(\, £, rf). (A.3)
Thus u(x) and v(x) are analytic in | x | < R and we note that they have odd order zeros
at x = 0. Hence y = u' + u/x and z = v' + v/x are also analytic in | x | < R and
must have convergent power series expansions given in (A.l). The existence of a solution
of (A.0) in the interval | x \ < R(\, £, v) is thus established and we note that R > 0 for
finite (X, £, ??).

Let (X0 , £o, Vo) be an arbitrary fixed set of finite parameter values and R0 be a fixed
number in 0 < R0 < R(\0 , £o , Vo)- Then for all x in [ x j ^ R„ it follows from Lemma
1 that:

I an(\, £, tj)x2n | ^ m(i7o), I &»(X, £, v)x2n | ^ m(i?o); (A.4)

for all (X, £, 77) in | A | ^ | X0 |, | £ | ^ | ?0 I, I v | g | i)0 |. However a simple induction
assures us that ah(\, £, y) and 64(X, ?, ij) are both polynomials of degrees not exceeding
2k in X and £ and not exceeding k in 77 for k = 1, 2, ••• . The Weierstrass convergence
theorem can now be applied to the series in (A.l). It implies that u(\, £, ij; x)
and v(\, £, rj; x) are analytic functions of (X, rj) in the above intervals. Since (X0, f0, Vo)
was arbitrary we have shown that the solution (A.1) is in fact entire in (X, £, 17).

We shall now show that this solution is unique. Let us assume the existence of two
solutions (ui ,yi,Vi, Zi) and (u2 , y2, v2, z2) in some common interval 0 ^ 1 S e. Then
from the definitions

U(x) = Ui(x) - u2(x), Y(x) = y^x) - y2(x),

V(x) = Vi{x) — v2(x), Z(x) = zt(x) — z2(x),

we obtain with the aid of (A.0)

(a) V — —- U + Y 17(0) = 0;

- -(| + \')u - | V, Y(0)
(A.5)

(b) Y' = + rju - ^ V, 7(0) = 0;

(c) V' = —i V + Z, 7(0) = 0;

(d) Z' = Z( 0) = 0.

Now let

W(x) = U\x) + V\x) ^ 0,
and we find from (A.oa) and (A.5c) that:

| £ w = w + UY + VZ, T7(0) = 0. (A.6)

It follows from (A.0) that u^x), u2(x) and v2(x) have derivatives in 0 < x g e and
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right sided derivatives at x = 0. Then, recalling that ux(0) = u2{0) = i>2(0) = 0, there
exists some finite constant kx > 0 such that

max
OSxSe

/ u,{x) u2(x) v2(x) \ ^ k
\ \ X ' X ' X / ~ 1

With the definition

k2 = max (&! + X2, 2fki),

we obtain by integration of (A.5b) and (A.5d):

I Y(x) \^k2 f (| U(x') | + | V(x') |) dx',
Jo

I Z(x) | ^ k2 f | U(x') | dx'.
Jo

Using these bounds in (A.6) implies

§ £ W(x) ̂  W(x) + fe(| U{x) | + | V{x) |) JT" (| U(x') | + | V{x') |) dx'. (A.7)

Now let e0 be any positive number such that

to min {*' 2k) '

W(xo) = max W(x).
0£x£eo

and let x0 in 0 < x ^ e0 be any point for which

Then by Schwartz's inequality,

| U(x) | + | V(x) | ^ 2inWu\x) ^ 2U2W1/\x0), 0 ^ x ^ to .

With x = x0 in (A.7) we now obtain, using the above inequality twice,

I £ W(xo) ̂  [2k2x0 - y^o). (A.8)

By the choice of e0 we must have

^2&2£0 — < 0, for all x0 in 0 ^ x0 ^ «0 .

Now as W(x) is positive for any x in 0 < x e0 it must have a positive maximum in
this interval. Since this must occur at x = x0 we have from (A.8) that dW(x0)/dx < 0.
But this is a contradiction of the fact that at a maximum in 0 < x ^ e0 , dW/dx S: 0.
Thus W(x) = 0 in 0 ^ x ^ c0 and the uniqueness is established.

We have now proved that the initial value problem (3.0) and the equivalent problem
for the first order system (A.0) each possess a unique solution in some finite interval
0 ^ x g «0 , e0 > 0. This solution is analytic in the parameters X, £ and rj. We now use
the value of the solution at x = £0 as initial data to extend the solution to the region
x > £0 . Such an extension exists, is unique and analytic in the parameters so long as
the right sides of (A.0) are finite. Since x > 0, they can cease being finite only if some
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component of the solution becomes infinite. We shall now show that this does not occur
for any x > 0 and therefore the solution can be continued indefinitely.

To show that the solution is finite for all finite x, we integrate each of the equations
(A.O) from 0 to x and use the initial conditions to obtain

z = 2?; + £2 f aTV dx,
J 0

v = x~l f xz dx = t] x + f (x2 — sVV(s) ds,
J 0 J 0

y = 2- fo (x-'v + \>)udx, (Ag)

= 2 — (?? + X2) f u dx — f r2 f (f — s2)s~xu\s)u{t) ds dt
Jo £ Jo Jo

u = x 1 J xy dx = x — J (x'1 ~ s2)u(s) ds

— [ (x2 — t2)t~2 f (t2 — s2)s_im2(s)m(/) ds dt.
*±X Jo Jo

In the last three equations we have substituted from the preceding equations and also
interchanged orders of integration to simplify certain repeated integrals. We now re-
write the last equation in the form

u(x) = x — [ k(x, t)u(t) dt. (A.10)
Jo

Here k(x, t) is defined by

k(x, t) = (x' ~ f) [„ + x2 + ^ fo (i - rV)s"V(s) • (A.ii)

From (A. 10) we wish to conclude that u{x) is finite for every finite value of x. To
do so we first suppose that | k(x, t) | is bounded by a constant k0 for all t and x satisfying
0 iS t ^ x ^ x0 . Then (A. 10) yields

I u(x) | g a;0 + ka f | u \ dx, 0 g x ^ x0 ■ (A.12)
Jo

From (A. 12) it follows that

I u(x) | ^ xaek°x, 0 ^ x g x0 ■ (A.13)

Let us now consider the case in which k is not finite for every x. From (A. 11) we see
that the least value of x for which k can become infinite is the least value of x at which
u becomes infinite. Let this value of x be x0 . Then from (A. 11) the singular part of k
is positive. But then (A.10) shows that u(x0) is not positively infinite since the singular
term on the right side would then be negative. Similarly u(x0) is not negatively infinite.
Thus u(x0) is finite so no xa exists at which u becomes infinite. Since a(x) is finite for all
x, it follows from (A.9) that z, v and y are also finite. Therefore the solution can be con-
tinued indefinitely.



1962] BUCKLED STATES OF CIRCULAR PLATES 65

In conclusion we observe from (A.9) that if 17 > 0 then v(x) > 0 for all x > 0. There-
fore (3.1) cannot be satisfied if ri > 0 so solutions of (3.0) with 77 > 0 cannot solve the
buckling problem (2.1) and (2.2).

Appendix II

The simply supported plate. If the edge of the plate is simply supported then the
boundary value problem is given by Eqs. (2.1), (2.2a) and, in place of (2.2b),

U'{ 1) + rt/(l) = 0, 7(1) = 0. (2.2b),

The analysis proceeds as in Sec. 3 and 4 but now Eqs. (3.1) are replaced by

/(X, £, v) = u'(X, £, v, 1) + vu(\, !j, v; 1) = 0, (3.1),

»(*> £, V, 1) = 0.
Then parameter values (Xn , 0, 0) which satisfy (3.1), are in place of (3.2),

X„ = fci,„ , n — 1, 2, • • • , (3.2),
where /cx is the nth root of

+ fJ,(X) = 0.

There is again no root for X = 0 since v > —1. Now solutions of (3.0) which satisfy
(3.1)s are given by (3.3), provided the X„ are as above. The solutions again correspond to
the trivial (unbuckled) solution U(x) = V(x) = 0, for the simply supported plate.

We now consider the Jacobian

r = d(/, v)
1 3(X, r,)

at (X, 17, x) = (X„ , 0, 0, 1). Using (3.4) and (3.5) we find that

Jt = /(X„ , 0, 0) = w'(l) + vu( 1).

If = 0 we obtain a contradiction exactly as before. Hence by an application of the
implicit function theorem and Theorem I we obtain Theorem II3 : the analogue of
Theorem II in which j1-n is replaced by /clin and in which U(x) and V(x) are a one param-
eter pair of solutions of (2.1), (2.2a) and (2.2b)s (i.e. of the simply supported plate
problem).

The properties of these solutions are exactly as described in Sec. 4 where X„ is the
value in (3.2), and the boundary condition at x = 1 in (4.2a) is replaced by

j-xu[n\l) + vu[n\\) = 0.

In particular v[n) (x) is still given by (4.3) and X^ by (4.5).
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