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—NOTES—

ON THE SPECTRA OF UNITARY HALF-SCATTERING OPERATORS*
by C. R. PUTNAM, Purdue University

1. Introduction. Let H0 denote a self-adjoint operator, bounded or unbounded, on
a Hilbert space of elements /, g, ■ ■ • , and suppose that H0 is absolutely continuous.
(By the absolute continuity of a self-adjoint operator H with the spectral resolution

H = [ X dE(\) (1)
J -co

is meant that || E(X)f || is an absolutely continuous function of X for every element /;
see Rosenblum [15], Kato [10], Kuroda [12], Putnam [13].) Let V denote a self-adjoint
operator for which Hi , where

H, = H0 + V (2)

is self-adjoint and absolutely continuous. The operator Hi defined by (2) must be self-
adjoint if, for instance, V is bounded; non-trivial conditions assuring the absolute
continuity of Hi however are not so apparent.

In [3] and [4], Friedrichs considered a special pair H0 and V, where H0 was bounded
(and also absolutely continuous) and V was a certain type of integral operator,
and showed that if Hi is defined by

H[ = H0 + eV, e real, (3)

then, for sufficiently small e, the strong limits

lim U\ = U+ and lim U't = UL , where U\ = exp {itH[) exp ( — itH0), (4)
t-* CO t —> — CO

exist, and U+ and U1 are unitary operators satisfying

HI = U'JIoUl* and H[ = UIH0UL*. (5)
In addition, each of the operators U' = U', U1 is analytic in e,

U' = I + eUi + e2U2 + • • • , (6)

and hence satisfies

|| U' - I || ^0 as e-»0. (7)

It is seen that condition (7) implies that

sp(Ue) —> 1 as « —> 0, (8)

where sp(A) denotes the spectrum of an operator A.
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Later, Ilosenblum [15] and Kato [9], [10], showed that if (2) holds, where H0 and Hi
are absolutely continuous and if V is of the trace class (that is, V is completely con-
tinuous with eigenvalues Xi , X2 , • • • satisfying X! | A,- [ < °°) then the strong limits

U+ = lim U, and U- = lim U, , where U, = exp (itHi) exp (—itH0), (9)
*-»oo t —» — CO

exist and are unitary operators satisfying

H1 = U+H0U* and II1 = U-H0U* . (10)

Similar problems, including that of the perturbation of absolutely continuous spectra,
as well as generalizations to cases where H0 and H1 are not necessarily absolutely con-
tinuous, where V is not necessarily of the trace class, and where the limits (9), when
they exist, may be only partially isometric, have been investigated. In particular, see
Aronszajn [1], Kato [9], [10], Kuroda [12], Rosenblum [15], and, especially in the physical
context of scattering theory, Cook [2], Hack [6], Jauch [7], Jauch and Zinnes [8]. (In the
physical theory, the operators H0 , Hx and V correspond to the free Hamiltonian, total
Hamiltonian and interaction potential respectively, see [7] and [8]; the operators U+
and U_ of (9) have been called half-scattering operators by Friedrichs [5], p. 233, and
wave operators by Jauch [7], p. 137.) When (3) is assumed and H0 and V satisfy certain
conditions, these results imply the existence of the operators U+ and U1 , as strong
limits defined by (4) and satisfying (5). However, XJ" = U+ , ~U 1 now may not be analytic
perturbations of the identity, (6), and so (7) and (8) may not hold. It will be shown in
the present paper that under certain conditions relation (8), hence also (7) and (6),
must not hold.

Let H0 and Hi denote the free and perturbed Hamiltonian one-dimensional wave
mechanical operators

H0 = -d2/dx\ H1 = H0 + V(x), (11)

on the Hilbert space L2(— °o, oo). It will be shown, as a consequence of a result of Kuroda
[12], that if V = V(x) is non-negative, bounded, and "small" for large x (condition (15))
then necessarily the strong limits of (9) exist as unitary operators, and that furthermore,
as a consequence of [14], if also V{x) is "not too small" (condition (16)), then the spectra
of these operators are the entire unit circle | z \ = 1. Correspondingly, if H\ is defined
by (3), then (4) and (5) hold, and sp(U+) and sp(Ul) are, for each e > 0, also the unit
circle. In this case then, relation (8) fails to hold, and U+ and U1 surely cannot be of the
form (6). Use will be made of the following

Lemma. On a Hilbert space let H0 be a non-negative {not necessarily bounded) self-
adjoint operator, V a bounded non-negative self-adjoint operator, and suppose that II0 and
Hi = H0 + V are unitarily equivalent, thus

H0 ^ 0, 0^75 const. I, Ih = UH0U* (U, unitary). (12)

If f is any element of the Hilbert space for which g — V1/2f 9^ 0 and g is in the domain of
H0 , then

meassp(U) ^ 2t[1 + 2 || / H2(H0g, g)/1| g ||T\ (13)

The proof of the Lemma was given in [14].
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2. Theorem. Let H0 and Hx be defined onL2(— <», °>) by (11), and suppose that V(x)
is continuous on — oo < x < oo, satisfies

0 ^ V(x) g const, on — oo < x < 00 > (14)

■and that

r v(x)
J — CO

dx < oo . (15)

Then H0 and Hx are absolutely continuous and the strong limits U+ and U- of (9) exist as
unitary operators which satisfy (10). If, in addition,

lim inf (6 — a)~3 f V~\x) dx = 0, (16)
6—a—»oo J a

then the spectrum of each operator U+ and U- is the entire unit circle \z\ = 1.
Condition (16) rules out, for example, V (x) = 0, a function for which the assertion

of the Theorem concerning the spectra of the associated operators U+ and U- is surely
false. In fact, by (9), U+ — I and £/_ = I, hence also, corresponding to (3), U+ = I
and U1 = / for all e.

It is easily verified that an example of a function satisfying all the conditions (14)-(16)
is furnished by V(x) = | x |~°, 1 < c < 2 (c = const.), when x is large, and where V{x)
is defined so as to be continuous and non-negative near x = 0.

3. Proof of the theorem. It is known that H0 is absolutely continuous with the
spectrum 0 ^ X < oo (see Weyl [18], Kodaira [11], Titchmarsh [16], p. 59). Relation (14)
guarantees that the spectrum of Hl is contained in the half-line 0 :£ X < while (15)
implies via, for instance, asymptotic formulas for the solutions of the equation
y" + (X — V(x))y = 0, that Hx is absolutely continuous with the spectrum 0 X < oo;
see Wintner [17], p. 421. Relations (14) and (15) imply also that V(x) is of class
L2(— oo, oo). An application of a result of Kuroda [12] (see Theorem 3.1, pp. 438-439
and Theorem 5.1, p. 21; also a reference cited on p. 21 to T. Ikebe) then implies the
existence of the strong limits (9) as unitary operators satisfying (10).

1
In order to complete the proof of the Theorem it will be shown that (16) implies

inf = 0, (17)f g'2 dx f V 1(x)g2 dx / ( [ g2 dx)
_J — CO J— 00 / \J — CO /

where g, g" (hence g') and V~1/2g belong to L2(— oo, oo). Since
/* 00 «co

(H0g, g) = - gg" dx = / g'2 dx,
J — CO J — CO

it is seen that (17) implies meas sp(U±) — 2x by virtue of (13). There remains then to
verify (17).

To this end, consider the function y = z(x) defined on — oo < x < oo by z(x) =
(6 — a)~3/2(x — a) for a ^ x ^ (a + b)/2, z(x) — z(a + b — x) for (a + b)/2 ^ x g b,
and z(x) = 0 for a; outside the interval a = x = b. It is seen that z(x) is continuous, has a
piecewise continuous first derivative, and that

J z2 dx = 1/12, J z'2 dx = (6 — a)~2,



88 NOTES [Vol. XX, No. 1

and

f V~V dx = /" V'z2 dx ̂  f" V'1 dx/4(b - a).
J — co J a J a

Hence, the expression [• • •] of (17) is, for g = z, majorized by const. (b — a)~3 Jb„ V~l dx.
It is clear that each z can be smoothed out so as to obtain a function g possessing con-
tinuous second derivatives of the type allowed in (17) and such that [• • •] has again the
same majorant. Condition (16) now yields (17) and the proof of the Theorem is complete.
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AN UPPER BOUND ON NON-NEGATIVE TRANSIENT RESPONSES*
BY

A. H. ZEMANIAN (New York University)

In a recent note [1], it was shown that, if the real-valued function w(t) of the real
variable t is zero for t < 0 and if its Laplace transform W(s) is given by

W( ^ — a"s" ~l~ ''' + ao _ N(s) , .
[S) sm + +■■■ +bo D(s) ' W

where m > 2n and the real parts of the roots of the polynomial D(s) are all non-positive,
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