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1. Introduction. Previous work by Hoff [1] on bodies undergoing steady state
creep is extended. The general creep law chosen reduces to a single power term form with
exponent n for uniaxial tension or simple shear. A comparison is made between homo-
geneous bodies of arbitrary but identical shape and size, each composed of material of
different n. In general terms, the result is that the convex surfaces of constant
(normalized) dissipation rate, plotted in a (reduced) load space, nest inside each other
as n increases. This nesting property can be of great help in the practical calculation
of close approximations to creep deflections. All surfaces coincide at points which corre-
spond to a design for minimum weight. Solutions with n = 1 are the complete analog of
linear elastic solutions; those with n infinite correspond to perfectly plastic solutions. [1]

2. Stress-strain relation and dissipation rate. A bar under constant uniaxial
stress, at a temperature which is elevated for the material of the bar, usually exhibits a
steady rate of deformation or creep following an initial or primary stage of decrease from
a much higher value of creep rate. The steady strain rate often is given reasonably well
over an appreciable range of stress by a single power term in the stress

e' = Bnc" (1)

The constant of proportionally BN and the power n vary greatly from material to material
and alter with temperature for a given material.

The stress-strain relation (1) may be put in dimensionless form by any arbitrary
choice of a convenient reference state of stress aN and of corresponding strain rate
€n = BNcnN for each material separately.

€; - u)
N WN/

(2)

The rate of dissipation of energy per unit volume D = at' in non-dimensional form is
D/Dn = (<r/aN)(e'/eN), where

Av = C.ve.v = BN<JN (3)

A simple generalization of (1) and (2) for strain rate under any state of stress <rti is

, di Dn ,n+1£"=^' * = ' (4)

where the dimensionless function <f> is homogeneous of degree one in cu/cn and has the
value unity when <ru is the uniaxial tension aN . In fully dimensionless form

e'a ,n d<f>
tn d(o-ij/aN) (5)

*Received July 26, 1961.
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Surfaces of constant 4> in stress space represent constant rate of dissipation. They are
convex [2], similar, and concentric. The strain rate is normal to each surface at the
appropriate stress point, and normals along any radial line from the origin are parallel.
If the ratio of corresponding radii of two surfaces is a then the ratio of each of the com-
ponents of strain rate at the corresponding points along a radial line from the origin is
<xn. The ratio of the dissipation rates is a"*1.

The incomplete generality of (4) as an extension of (1) will be restricted further by a
strong assumption of similarity of the materials to be compared. The functional form
of <j> will be assumed to be the same for all. Of course, the materials still may differ both
in the value of n and in the multiplicative factor corresponding to BN of (1). In fact, the
total restriction is not as severe as might be supposed. Good agreement with the actual
steady creep of many metals is obtained with a simple isotropic form of this
class, = CQJ\ or 02 = 3/2/2o> , in which CQ is a constant, J2 is the second invariant
of the stress deviation, and 2q = n + 1. However, anisotropic forms are as permissible
as any of the isotropic forms familiar in the theory of plasticity. It is worth noting that a
maximum shearing stress criterion may be employed, in spite of the singularities in the
surface of constant <£, because (6) still applies.

3. Description of the problem. A customary and often useful approach [1] to the
creep of bodies under constant loads is to assume that secondary or steady creep is of
overwhelming importance. Primary creep is ignored, as is the adjustment of stresses from
an initial elastic or elastic-plastic response to the steady creep state. Fig. 1 is a schematic
illustration of the problem which is posed here. Two bodies of identical shape and size
are shown, composed of material with the same governing functional form 4>. For the one
on the left, n is called m, with the accompanying notation BM , aM , e'M , DM and <j>M ■
For the one on the right, n is called r with the accompanying notation Blt , <rB , e/t , DR
and (f>R . The body on the left is acted upon by a set of forces PiM , the body on the right
by a proportional set of loads PiR ;

?JK = pliM.. (7)
ffl G M

Avoidance of infinite stress is symbolized by the loading blocks between the forces and
the body in both cases. The boundary condition on velocity it' is that u' = 0 wherever
u[ is specified.

Suppose further that the average dimensionless rate of dissipation of energy (6)
throughout the volume V is unity for each system. For the body M

[ 4>Vl dV =V (8)
J V

= / VijMt'iiM dV — <JMt'ilV — DMV. (9)
J V

[ tf1 dV = V (10)
J V

or

For the body R

*Repeated lower case subscripts in the same term denote summation.
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or

PiR^'iR = [ TijRe'iiB dV = Vrc'rV = DR V. (11)
J V

Subscripts M and R are employed with <£ to emphasize that <f>M is a function (homoge-
neous of degree one) of vhm/vm while <t>R is identically the same function of c-ijR/aR .
For aijM = cur , <t>M = ^rGr/vm • If am* — 70-aR ,

<t>M = Y0Bcrs/crM ■ (12)

The problem is to determine as much as possible about /3 in (7) as a function of the
exponents m and r and to show in particular that if r > m then /3 < 1.

4. Elastic analog and extremum theorems. If strain rate and velocity are replaced
by strain and displacement, each of the steady creep problems of Fig. 1 becomes an

. - m

PiM UiM = Dm V

P i R _ P iM
P 1

or <* m

Fig. 1

elastic problem which is linear for n — 1 and is non-linear in general. The distribution
and magnitude of the stresses depend upon the applied loads and the exponent n. Strain
depends upon BN as well.

If [3] for any given material obeying (5) the loads are multiplied by y the stresses
likewise are y times as large while the strains are multiplied by yn.

The theorems of minimum potential energy and minimum complementary energy
are applicable to the elastic problem and therefore by analogy to the creep problem as
well [4]. The equivalent of strain energy density is

wu,) = fg"' a,, de'a = = —rj DN<fN+l (13)

when (6) is substituted. The equivalent of complementary energy density is

fi(o"i.) = t'a dan = ffijt'u = ^ 1 DN<t>7\ (14)

For the stress boundary condition type of problem described, the theorem of mini-
mum potential energy becomes

[ dV - P,u' < f dV - PiUi , (15)
J V J V
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where u[ , l'u is any compatible set of velocities and strain rates satisfying the require-
ment that u'i = 0 wherever u[ is specified.

The theorem of minimum complementary energy becomes

[ dV < [ 0(of,)dV, (16)
J v J V

where a * is any equilibrium set of stresses satisfying the boundary conditions on stress.
As

PM = f (Tijt'j dV = [ W(e'ii) dV+ [ Q(ait) dV - DN f <^+1 dV, (17)
J v J V J V J V

after division by DN (15) and (16) can be written as the continued inequality

V^1Pfi'i - n f «+1 dV < [ <&+1 dV < [ (<f>$)n+1 dV (18)
JLStf J y J y J y

where $ is the value of <t> for e'# = e/, and 4>* is the value of 4> for a,-,- = when the
exponent in (1) and (5) is n.

5. Proof that (3 < 1 if r > m. The state of stress for body R is in equilibrium
under loads PiK = fiPiM^n/o'M ■ Multiplied by y = aMIthe stresses form an equilib-
rium set for body M with loads PiM ■

The right hand inequality (complementary energy theorem) of (18) is

f 4>l+1 dV < [ dV (19)
J v J V

in which the left hand integral (8) equals V and 4>*r from (12) is {<ym/fio-R)4>R<rR/iyM = <j>K/l3.
Therefore

F/r+1 < [ <t>Tl dV (20)
J V

or

Pn+1 <yf (^+1)(m+1)/(r+1> dV (21)

The right hand side of (21) is of the form

J x' dV, (22)

where x > 0 everywhere. As (22) is monotonically increasing in s, and from (10) is equal
to unity when s = 1, when s < 1 (22) is less than unity. Therefore from (21) if r > m,
0 < 1.

6. Interpretation in (reduced) load space. The meaning of the result for /S is illus-
trated in Fig. 2. Surfaces of unit average dimensionless rate of dissipation of energy,
Pin' = DnV , drawn in a space whose co-ordinates are P,-/aN nest inside each other as n
increases. When, for a particular P{ , 4>r in (20) or (21) is unity everywhere in the body,
13 — 1 and all surfaces coincide. Considering the perfectly plastic analog, r —» oo; this
necessary and sufficient condition for /3 = 1 may be recognized as the criterion for
minimum weight design: viz. constant throughout the volume of perfectly plastic
material [5]. Similarly, <j> = 1 everywhere is the criterion for the most effective use of
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Fig. 2. Nesting surfaces of dissipation rate
Pi Ui

Pi Ui = Dn V — <tk ew V or — V.

material (5) in creep. Just as surfaces of constant <t> are convex in stress space and strain
rates are normal to them, the surfaces of constant dissipation rate are convex in Pi
or Pi/<rN space and the corresponding working components of velocity are normal to
them; Fig. 2. The curves shown in Fig. 2. correspond to the very simple statically de-
terminate two-dimensional structure of Fig. 3. This example is taken from a companion

Fig. 3. Structure giving the curves of Fig. 2

paper [6] devoted to the practical use of these properties in problems of analysis of a
number of types of structure.

7. Lower and upper bounds on p. A lower bound on /3 can be found with the theorem
of minimum potential energy, the left hand inequality of (18), with M, m for N, n

PiMu'i -ml $mM+1 dV < [ <T+1 dV (23)
Um Jv J v
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It would be permissible to substitute the strain rate e'ijB and velocity u,'B for body R as a
compatible state for body M. It is better, however to multiply these quantities by
/3eW4 = (fi<rn/<7M)(DM/DR) so that P'iMu' = (PiKu'iR)(DM/DR) = DMV. Also from (5)

.K = <t>rR for VUmIi'm = or l'iiM = («{,*)(«*/«*)• For strain rates /3 times as large
= [ix/rn<j>rRm. Thus (23) can be written

(m + 1)F — m/3(m+1)/ra [ dV < V (24)
Jv

—  < nlm+1Wm (25)

or

L♦r' dv
A more symmetric form in r and m is obtained if the exponent (m + 1 )r/m is written as
(r + l)(r/m)[(m + 1)/(r + 1)]. For r > m the exponent is greater than r + 1 so that,
as it should be, the left hand side of (25) is less than unity (see (22)).

The complementary forms to (21) and (25) are convenient at times. They can be
written down by inspection as

 —  < /?r+1 (26)
[ («+1)<r+1)/<m+1)rfF

J V

and

plrtD/r < y f (-/'VC + D/C-« dV (27)

8. Generalized stresses and strains. All the results carry through without essential
change if the stress-strain relation is replaced by a generalized stress-generalized strain
relation with the same exponent n. For example, axial force in a bar or bending moment
in a beam may be substituted for a in (1) or (2) and e' replaced by rate of elongation or
rate of change of curvature respectively. Equivalent substitutions are made for sheets,
plates and shells.

9. Velocity boundary condition problem. The convex surfaces of constant unit
average dissipation rate in u'Jt'N space follow an inverse order from those in Pt/aN space.
They nest inside each other as n decreases.
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