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ON A THEORY FOR UNSTEADY MOTION OF RECTANGULAR
WING IN SUPERSONIC FLOW*

By
MILOMIR M. ST ANISIC

Purdue University

1. Introduction. The problem of the determination of the lifting forces acting on a
wing of rectangular form in a supersonic, unsteady flow has been of interest for many
years. The solution** for the motion of the wing of rectangular form in a supersonic,
steady flow has been obtained by Busemann [1], Galin [2], Falkovich [3] and many
others. The unsteady wing theory for the case of a wing of delta form has been developed
by Miles [4], [5] and also independently by Stanisi6 [6], [7]. Moreover, Krassilchtchikova
[8] has developed an unsteady wing theory for an arbitrary plan form of the wing by
means of an integral equation which has not been solved. This integral equation is a
direct consequence of boundary conditions imposed upon the lifting surface by means
of the Volterra-Green's Method. The difficulties of solving such an integral equation [9]
lies in its domain of integration. For the case of the wing of delta form in [7], an approxi-
mate method to solve the corresponding integral equation has been presented.

However, if the form of the wing is rectangular, then Volterra-Green's method
imposes enormous difficulties due to edge effects. Recently, Kovaleva [10] extended the
technique developed by Galin for steady motion to the solution for the unsteady case.
This solution is restricted by the assumption that the down-wash distribution over
the lifting surface is a monotonically increasing function depending on time only. This
assumption differs from the conditions appearing in practice since the actual conditions
holding on the lifting surface are functions of both time and space coordinates. In this
paper a new method is developed for determining the lifting forces acting on a wing
of rectangular plan form subjected to the more generalized boundary conditions occurring
during flight. The new method is based on technique previously used by Galin and
Kovaleva. The method consists basically of two steps: Firstly, to determine the steady
loading function which satisfies the more generalized boundary conditions and secondly,
by using the technique of operational calculus to find the relation between steady and
unsteady loading function which will yield the solution of the problem in closed form.
The same method has been applied previously by the author for the solution of the
problem of the unsteady motion of a delta wing in a supersonic flow with supersonic
leading edges [11].

2. Formulation. Consider a rectangular wing of plain form of span 1, and width h,
placed in a coordinate system as shown in Fig. 1. The partial differential equation de-
scribing the disturbance of the flow in presence of a solid body is given by:

/Ti*-2 d2$ , d2$ . d2$ 1 f0,r d2$ . d2$1 _— (At -l)x^ + ^ + r^ 2 2*7 T—; + T^r = o (1)dx dy dz a L dx dt dt J

*Received September 8, 1961; revised manuscript received December 18, 1961.
**The numbers in the squared brackets refer to the bibliography at the end of this paper.
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z

Fig. 1 Geometry of Rectangular Wing in Supersonic Flow

where V is velocity of the wing, a is velocity of the sound and $ = $(x, y, z, t) is the
velocity potential function. Then the lifting force acting on the wing is given by:

e--2»n'(f +u%)d"* ®
where p is the undisturbed density. Equation (1) is subjected to the following boundary
conditions.

a) The normal component of the velocity of a wing must be equal to the normal
component of the velocity of the flow, i.e.,

£l-n = c-n (3)

where 0 is velocity of the wing, c is velocity of the flow field and n is normal to the
lifting surface, [6]. Denote the position of the wing at any time as

2 = g(x, y)e~'"t (4)

where to is the frequency of the vibrating wing, and g(x, y) = g is a prescribed function,
regular every where in the region under consideration. It is easy to show [6] that the
condition (3) can be written according to the linearized theory as

dz = - «•>»] , 0 < x < h, I > y > 0 (5)

b) The other boundary conditions result, as stated by Kovaleva [10] from the fact
that

$(r, , ra) = 0, and I; HT, , r2) = 0, (6)
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where I\ and r2 are the characteristic surfaces [6] of the hyperbolic equation (1), and v
is conormal on the characteristic surfaces. Then, by standard substitution,

$(a;, y, z, t) = ekx~""^{x, y, z). (7)

Equation (1) can be written as

d2* , d2* , d2* , .2l"(M -1)^ + ^ + ^- + X* = 0' ®

where SF = ^(x, y, z) and

However, Eqs. (5), (6), and (7), lead to

dz
= e~kx[u ̂  - tog J , 0 < x < h, l>y> 0

dz
where

a" s! rl dx' dyr

A2

Equations (8), (10), and (11) can then be written as

(10)

*(r,,r2) = o; £ *(r,, r2) = o. (11)

Equation (2) now becomes

Q - -2PUe- ( I' [(* - |)* + f }'■ dx dy. (12)
Note that (10) can be written as

= e~*7 (x,y), (13)

j{x, y) = U-j9x - iug. (14)

Equation (14) can be expanded in Taylor series, namely
CO CO

1(x,y) = X) Ha.rX'y', s = 0,1,2, •••; r = 0,1,2, •••, (15)
8=0 r=0

where asr are coefficients given by

1 d'f d'j x = 0, y = 0 (16)

Denote
xt = Ax, yx = Any, z, = Afiz, (17)

where

= (-)2, /X2 = (M2 - 1). (18)

a2\f : a2* . a2* . T .
—t*2 + 2 + t-2—b ^ — 0, (19)dxi dyi dZi
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/(si , Vi), 0 < xx < Ah, Afil > y > 0 (20)
cW
dzx

e~t*x

An

^(r,, r2) = 0; £ ^(r,, r2) = o (21)

with

0 = k/A. (22)
Equations (19), (20), and (21) represent the boundary value problem under consideration.

3. Method of solution. As soon as a function ^(zj, yx, zx) is found such that satisfies
(19) subject to the conditions (20) and (21), the problem is solved, since (12) can then
be evaluated without any difficulty. The solution, ^(a^ , yx , zx) of (19) will hereafter be
called the unsteady loading function.

Moreover, the Volterra-Green method will not be used since this method reduces
the solution of the problem under consideration to an integral equation. Attempts to
obtain a solution to this equation appear to be hopeless. In order to find the unsteady
loading function it will first be necessary to determine the steady loading function,

t gj) characterized by

d2^* d2^r*
~^ + %- + lk = 0 ™

and

dfr*
dzx

e'0Xl
—- Kxx , yx), 0<Xl< Ah, A til > yi > 0 (24)

**(rt, r2) = 0; , r2) = o. (25)

After ^(xj, yx , zx) the so called steady loading function is determined, then by use of the
operational calculus the unsteady loading function ^'(xi , yx , zx) will be expressed in an
integral form, whose integrand contains the steady loading function ^(ajj , yx , zx). This
is the main object of this study.

4. Solution for the steady loading function. Evidently, the solution for steady
loading function, ^(zj, yx, zx) will be determined as soon as a function = ^*(xx, yx, zx)
is determined such that the partial differential equation

a2*o* , a2*? a2*?
dXi ' dyt ' dzx

subjected to the boundary conditions

= 1, 0 < xx < Ah, Anh > yx > 0 (27)
)

**0(r,, r2) = o (28)

a*?
dzx

, r2) = 0 (29)

is solved.
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Then the steady loading function, satisfying (23), (24) and (25) is given by

** l"-° = £ f ' y1 ' Zl) ^ - f, , 3/0] d£, (30)

Note that (24) can be written as

fr L... - i I" £,
Integrating (30) by parts, then

= ' Vl 'z^ l""° - £i , 2/0] IS'

+£' '2/1'2i)] L ^ ^

Or, since the free term vanishes by virtue of boundaries, then

** '"-0 = V r [4 **°fe '2/1 ' Zl)J L -o ~ ^ • (33)
For a wing of rectangular from Galin and Kovaleva adopted Busemann's solution
[1. eq. 15] for which a derivative d/dxt (^i . Vi, zi) |*,-o exists. As stated by Busemann,
we have

—- cos-1 fl - 2 —) for x, > y,57*.* I....- 1 V v (34)
1 [—1 for xx < yi .

Hence, by the use of (34) the steady loading function can be obtained by direct quad-
rature of (33).

5. Relation between steady and unsteady loading functions. Define

F(a, 2/1 ,Zi) = a f e~aXlty(xi , yx , z:,) dx, (35)
Jo

F*(a, yx , Zj) = a f e~azi^*{xx , yx , z,) dx, . (36)
Jo

Integrating (35) by parts it follows that

F(a, yx , z,) = a-1 J^ e_ai* *(*, , 2/1 , z,) dx, . (37)

Then (19) and (37) lead to

~2 F(a, y1 , Zi) + £2 f(«, 2/i , Zi) — (a — 1 )F(a, yx , z,) =_0. (38)
ay 1 oz.

Using the same technique (23) and (36) lead to

^2 F*(a!, 2/1 , zO + £2 f*(«, 2/1 , 2i) - aF*(a, yx , zx) = 0. (39)
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Evidently, (38) and (39) imply

F(a, Vl , zL) = F*[(a2 - 1)1/2, Vl , z,]. (40)

Then
F(a, yx , z.) U.o = F*[(a2 - 1 ),/2, V, , *,] |„_0 . (41)

It should be pointed out that (41) represents the functional relation between steady and
unsteady loading function by means of operational calculus in the sense of (35), (36).
However, from (24) the following relation holds

J_ ^ ; yi) = ^**(2, — Si , 2/i , zj U-o • (42)

Therefore, (33) and (42) lead to

V* I...0 = fo **(«i - fi , Vi , 2i) o , Vi , z,) J | ^ . (43)
Denote

= T(a, ih , Zi) |Jl_o' 1,1 ' Zl^

= a f e a(' ' yi > l"-° • (44)
J o

Evidently, from (36) it follows that

'2/1 = TT F*(a, Vi , Zl) L-
1=0

= a Jo 6 "' ' 2/1 ' ^ ^ ^

Then (43) by virtue of (44) and (45) represents the Faltung integral; namely, (43) can
be written as

F*[(a ~ 1)'/2, Vl , z,] U-o

= («2 " 1) -i
|-F*[(a2 - 1 )u\Vl ,Zl) T[(a2 - l)t/2, y, , *] U_„ . (46)

Zi = 0

Then from (41) and (46) it follows that

F(a, yx , z,) U-o

= (a2 - 1)-1/2 F*[(a - l)1'2, yx , *] T[(a2 - 1)1/2, Vl , z,] I.,., . (47)
= 0

But
_d
dz~ F(a, Vi , Zi) U-o = fo e *Xlf(xi > 2/i)] <&i . (48)

Therefore, (41) and (47) lead to

F(«, t/i , zi) |   = («2 ~ F(«> Vi > *)] [ _o W - 1)1/2,2/1 , z,] (49)
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Clearly, (49) can be written as

F(a, Vi , Zi) |„-o

= j^a-1 F{a, Vi , Zi) o ot(a — 1 )~1/2T[(a2 — 1),/2, yx , g,] J |2l,„ . (50)

Moreover, the term in the first bracket on the right side can be modified. Firstly, note
that d/dzi F(a, yt , 2X) is of exponential order. Then

£{a/I f0 e ^v' Vl^ dvJ = a_1 ~dz F^a' Vl ' '*I=0 ' ^

However, the term in the second bracket of (50) must be developed. Denote

T(a, 2/t ,2,) = £{/*(*)} (52)

where

£{/*(*)} =« [ e~°'/*(0 dt. (53)
Jo

But from a table of Laplace Transforms

jB-'lle-*'-—),/* - e">} = 1°' 0 < t < k (g4)
[ak(f - k2)~u2IMt2 ~ k2)1/2], t > k

where Ii , is a modified Bessel function of the first order. Putting a = 1 and k = u in
(54) it follows after taking the Laplace Transform that

- e-"u) = oTl£{u{t2 - m2)-i/2/,[(/2 - m2)1/2]}. (55)

Evidently,

(g_(a,_ e_OB) = r e-atu(f _ u2)-i/27i[(^2 _ M2y/2] dt (56)
Jo

with the condition that the integrand is zero for t < u. Hence,

(e-(„.-u./.u _ = I" e-"u(f _ u2)~1/2f*(u)Ii[((2 - w2)1/2] dt. (57)
Jo

Integrating (57) from 0 to » with respect to w, it follows that

r _ e-°y*(u) du= [ f e-a'u(t2 - m2)",/2/*(m)/.[(/2 - m2)1/2] dtdu. (58)
Jo Jo Jo

Denote the left side of (58) by L and right side by It, then in accordance with (52) it
follows that:

[ e~""f*(u) du = oTlT(ot, y1 , zO |„_0 (59)
Jo

and

1"° e~(a'~1>l/'"f*(u) du = {a - 1 y1/2T[(a2 - 1 )1/2, Vl , 2,] L_0 . (60)
Jo
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Therefore,

L = {a — 1 )-1/2T[(a2 - 1 )U2, Vl , 2l] - cTlT{«, yx , 2l) |„_0 . (61)

However,

R = T e~°" dt u(t2 - uTU2l*(u)h[(t2 - uT2\ du (62)
J 0 J 0

But as the integrand is zero when t < u, we have

r = J" e~"[£ u(t2 - w2)",/2/*(w)/i[(<2 - m2)1/2] du] <tt. (63)

Evidently,

= a_,Je{£ u(f - uY1/2j*(u)Ii[(i2 - u2),/2] dwj-

Let t2 - u2 = r2.
Then

/i(t)/*[(/2 - r2)1/2] dr}-

Evidently, (61) and (66) lead to

(a2 - iyU2T[(a2 - 1 )1/2, ?/, ,*,] |.,.0 - a~lT(a, Vl , *)

= IMf*[(t2 - T2)

a(a2 - l)"1/2r[(a2 - 1)1/2, Vl , Zt] |tl.„ = T(a, yx , «,)

+ £<f/" /.(r)/*^2 - r2y/2]dr}- (68)

Therefore,

a(a2 - l)-1/2T[(a2 - 1)1/2, Vl ,2,] = £<[/*(*) + £ ~ dr}• (69)

Eq. (67) by virtue of (44) can be written as

2 i \—l/2/T7[Y 2 iV2 "■ 1 ^a(a2 - 1) T[(a - 1),/2, yt , zj |...0 = > 2/i ,2.) L-o

(64)

u = {f — r2)I/2 (65)

and

w(/2 - m2)-"'2 du = -dr.

Therefore,

(66)

)W2]dr , (67)

+ MM £ *?[(£ - gy/2, y, , 2,] «&}■ (70)
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Clearly, (50), (51), and (70) lead to

F(a, y, , Zi) U-o = J^ e"s7(rj, yO **(& »2/i , Zi) |.,-o

+ £' /,&) ^ **„[(£ - $1/2,2/: , Zi] U-0 (71)

Therefore,

<C-1 Vr , 201 |.,-o = fo e~^f(v, yd d']*[^,*r*(& ' y>- >2>) l..-o

+ £' /xfe) ~ *im - &'*, yi, z,] l_„ <&] • (72)

Finally,

,~r ̂ *(fi , yi , zi) U-o
_Ofl

*(zi , Vi , Zi) U-0 = fo ya e ffvKv, Vi) dt]

+ r Afe) y1 , Zj] U_o <fe
Jo C?2

Hence,

*(a;, y, z) !,_0 = ~ ^ e~f"f(r,, Any) *o(£i , A/iy, A^z) |

+ r A&) - ©1/2, AM2/, A/jz] cfe
JO

<&, . (73)

• (74)

Eq. (74) represents the aims of this paper; in other words, the velocity potential function,
(7) is completely defined. Hence, (12), which represents the lifting forces on rectangular
wing, can be evaluated for practical needs with no difficulty by an engineer in the field.

6. Conclusion. The significance of the present analytic method in the theory of
unsteady motion of the wing is evident. The solution resulting from this method is
obtained in closed integral form, so that integrand contains steady solution. This
method has great advantage over Volterra-Green's techniques, since Volterra-Green's
technique always gives a solution in form of an integral equation which cannot be solved
exactly. Moreover, the numerical evaluation of the solution can be made by every
engineer working in this field, without any difficulties. This is of great importance in
dealing with flutter problems in the design of transonic and supersonic aircraft.

Finally, it seems worthwhile to note that the same method can be applied to the
wing of trapezoidal form by using a proper transformation which transforms a trape-
zoidal wing into a wing of rectangular form.
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