
241

ON THE YIELD CONDITION FOR ANISOTROPIC MATERIALS*
By

G. F. SMITH
Yale University

1. Introduction. The yield condition for an incompressible perfectly plastic material
may be characterized by a function

F( s) = 0, (1.1)
where s (= || s,-,- ||) is the stress deviation matrix which is of course symmetric and
subject to the condition that

Sn + s22 ~f~ S33 — 0. (1.2)

The yield function F is required to be invariant under the group of transformations
{T} = Tj , T2 , • • • , T„ associated with the symmetry properties of the material, i.e.,

^(T.sTr1) = F(s) (i=l, •••,?). (1.3)

In this paper a set of quantities Jx , • • • , J„ will be determined for each of the crystal
classes of the hexagonal and cubic crystal systems such that each of the ,J 1 , • • • , J„
is invariant under the group of transformations {Tj associated with the given crystal
class and such that every single-valued function of the matrix s which is invariant
under the group {T}, and hence the yield function F (s), will be expressible as a single-
valued function of the J1, ■ • ■ , •/„. The quantities Jx, ■ ■ ■ , J„ will be called a functional
basis.

The restrictions imposed on F by the equations (1.3) have been investigated by
von Mises [1] for certain of the hexagonal and cubic crystal classes. The argument
employed in [1] may be stated as follows: Since there are only five independent variables
among the s,-,- due to the condition (1.2), there are at most five functionally independent
invariants N1 , • • • , N5 (say) and all other invariants must be expressible as a function
of the Ni, • • • , N5. It will be shown in Sees. 3 and 4 that for both of the cases considered
in [1], the quantities iVi , • • • , Arr> given there do not form a set of five functionally
independent invariants and the results are consequently not valid. It is further observed
that for the crystal classes of the hexagonal and cubic systems, an arbitrary invariant
F is not in general expressible as a single-valued function of five invariants N, , ■ ■ ■ , Ns
even if they are functionally independent.

2. Functional bases. A functional basis for functions of a symmetric matrix s
which are invariant under the group of transformations {Tj = {Ti = I, T2 , • • • , T„}
is defined as a set of functions J ,(s), • • • , ./„(s), each of which is invariant under the
group {T}, such that there is exactly one set of solutions

{s} = {T.sTf1, T2sT2-\ ••• ,T„sT;'| (2.1)

to the equations

J,(s) = flj , J2(s) = a2 , • • • , Jn(s) = an (2.2)
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for all consistent sets of values of ■ , an . The solutions (2.1) may be said to form
a set of solutions equivalent with respect to {T}. Since, by definition, any single-valued
function of s invariant under {T} will assume the same value for each of the solutions
(2.1), it is clear that the values of Ji , • • • , Jn determine uniquely the values of all
single-valued functions invariant under {T}. Thus, any single-valued function invariant
under {T}, and hence the yield function F, is expressible as a single-valued function
of the elements of the functional basis.

It is known [2] that an integrity basis* will also form a functional basis if the group
{T} is finite. Integrity bases for functions of a symmetric tensor invariant under the
group of transformations appropriate to each of the crystal classes have been determined
by Smith and Rivlin [3] and these sets of quantities would serve as functional bases.
However, it is possible for the cases considered here to determine smaller sets of in-
variants which also form functional bases. Thus, if Jx , • • • , Jm are elements of the
integrity basis, the equations

Ji(s) — d\ , • • • , Jm(s) = dm

will specify a single set of solutions for s of the form (2.1) which are equivalent with
respect to the group {T} considered. If the values of Jn+l , • • • , Jm (say) are specified
in all circumstances by the values of Jy , • • • , Jn , then it is clear that the invariants
Ji , • ■ • , Jn will still suffice to specify a single set of solutions equivalent with respect
to {T}. Hence, the quantities , • • • , ./„ will also form a functional basis.

3. The cubic system. In this and the following section, functional bases will be
determined for each of the crystal classes of the cubic and hexagonal crystal systems.
The nomenclature adopted for the various crystal classes is that employed by Dana
and Hurlbut [4]. The symmetry properties of these crystal classes may be described in
terms of the transformations I, C, Rj , R2 , R3 , Dj , D2 , D3 , Ti , T2 , T3 , Mi , M2 ,
Si , S2 where I is the identity transformation; C is the central inversion transformation;
Rx, R2, R3, Ti, T2, T3 are reflection transformations and Di, D2, D3 , Mj , M2 , St , S2
are rotation transformations. Explicit expressions for the matrices defining these trans-
formations are given in [3]. The group of symmetry transformations associated with each
crystal class together with the set of transformations of the matrix s induced by them
will be listed in the sequel. The integrity basis given in [3] corresponding to the crystal
class considered will also be listed and it will then be shown that the values of certain
of the elements of the integrity basis are determined in all cases by the remaining ele-
ments Ji , • • • , Jn (say). The quantities Ji , ■ • • , Jn will then form a functional basis
for the crystal class considered.

(i) the tetartoidal (I, Dt , , D3) • (I, Mi , M2) and diploidal (I, C, Rx , R2 , R3 ,
Dx , D2 , D3) • (I, M, , M2) crystal classes. It is seen [3] that for these crystal classes the
requirement (1.3) is to be satisfied for the twelve sets of s = TsT-1 given by

(§11 , §22 i s33 , §12 , S23 , S31) = (s,i , S/i , Stic t Sii > $ik ! Sfc,'),

(®ii ] 8jj j Sktc ) Sii ) Sjfc j Shi) ) ($ii j $jj j Skk i J Sjk ) Ski) J (3-1)

(s;» j ®ii j &kk j ~Sij f Sjk j Ski)

where (i, j, k) = (1,2, 3), (2, 3,1), (3,1, 2). In this section, the quantity ^ • • -sinU
*An integrity basis is a set of polynomials, each invariant under (TJ, such that any polynomial

function invariant under {T} is expressible as a polynomial in the elements of the integrity basis.
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will denote the sum of the three quantities obtained by permuting the subscripts in
the summand cyclically. For example,

2^ ®ll(®31 S12) = Sn(S3i S12) "I" ®22(®12 S23) ~f" S33(S23 S31).

With this notation, an integrity basis for these crystal classes is formed [3] by
the quantities

Jl — 23 SU , J2 = 23 SnS22 , J3 = S11S22S33 ,

Ji ~ 23 S23 t J5 = 23 ®23®31 ) Jt ~ ®23®31®12 ) 2)

J7 = Sll(®31 4" S^), Js = 23 ®H®31®12 , t/9 = Sn(S3i S12),

J10 = 23 ®ll®22(Sll S22)) J11 ~ 23 ®23®3l(®23 ®3l)

and

^1 — 23 ®23®22®33 ; -^2 = 23 ®! 1®22(®31 ®23) > -^-3 = ' ®23®3l(®22 ® 11) • (3-3)

It may be readily verified that

K^Jl - 3JS) = 3Je(3J2 - Jl) + 2,/1./4./8 - 3./7./8 + J2J\

+ /4/5(Ji - 4J2) - J1JIJ7 + JX ,

2K2(J 1 3^/2) = (J1J2 S)Jz)J$ 2J1J4J10 3J7J10 ,

2K,{J\ - 3J5) = (9J62 - - 2+ 3J7Ju .

The values of Kx and K3 are then specified by the values of the quantities (3.2) unless

2(Jl - 3J5) = (sL - ®32l)2 + (S3. - 4)2 + (®12 - S23)2 = 0.

This can occur only if s23 = s31 = s22 in which case the values of Kx and K3 are given
by \J2J\ and 0 respectively. Similarly, the value of K2 is specified by the values of the
quantities (3.2) unless

2(</l 3J2) = (Su S22) ~b (®22 S33) "t" 0*33 ®ll) = 0

in which case K2 = 0. Hence, the values of Kx , K2 and K3 are specified in all cases by
the values of the quantities (3.2). Consequently, the quantities (3.2) form a functional
basis for the tetartoidal and diploidal classes. Since Ji = 0 from (1.2), any yield function
is expressible as a single-valued function of the quantities J2 , • • • , Jn defined by (3.2).

(ii) the hextetrahedral (I, D! , D2 , D3) • (I, M, , M2 , Tj , T2 , T3), gyroidal
(I, Dt , D2 , DS)-(I, Mi , M2), (C, Ri , R2 , R3). (Tj , T2 , T3) and hexoctahedral (I, C,
Rx , R2 , R3 , Dx , D2 , D3) • (I, M! , M2 , Tj , T2 , T3) crystal classes. It is seen [3] that
for these crystal classes the requirement (1.3) is to be satisfied for the twenty-four sets
of s given by (3.1) with (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2), (1, 3, 2), (3, 2, 1), (2, 1, 3).
An integrity basis for these crystal classes is formed [3] by the quantities./, (i = 1, • • • , 8)
and Ki defined by (3.2) and (3.3). From the previous section, it is seen that the value
of Ki is completely specified in all cases by the values of ./, , • • • , Js. Hence, the quanti-
ties Ji , • • • , J8 defined by (3.2) form a functional basis. Since J1 = 0 from (1-2), any
yield function F for the hextetrahedral, gyroidal and hexoctahedral crystal classes is
expressible as a single-valued function of the quantities J2 , • • • , Js defined by (3.2).
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Mises [1] states that for these crystal classes any yield function is expressible in
terms of the quantities

Ni — 21 (su S22) , N2 — 22 si2 1 N3 = S12S23S31 ,

N4 = 22 (®>i ^22) > = 22 (®i 1 "t" S22 2s33)s12 •

It is noted A\ changes sign under the transformation

(§11 , §22 ; §33 , §12 , §23 ) §3l) = (®22 ) Su , S33 , S12 , S31 , S23)

and consequently is not invariant under the group of transformations associated with
this crystal class. Thus, an arbitrary function of the Nj , • • • , N5 is not necessarily a
possible yield function.

4. The hexagonal system, (i) the trigonal-pyramidal (I, S,, S2) and rhombohedral
(I, C). (I, S,, S2) crystal classes. It is seen [3] that for these crystal classes the require-
ment (1.3) is to be satisfied for the three sets of s given by

(§11 > §22 , §33 ) §12 ) §23 ) §3l) = (Sll ) ®22 , S33 , S12 , S23 , $3l),

(gl/2 gl/2 gl/2

jSn "f" jS22 ~F 2 ®12 > "I" 5®22 =k 2 ®12 I S33 , 5®12 =fc a (®11 822),

3I/2 gl/2 \

5S23 ~"F 2 ®31 ) 5®31 i 2 ®23 ) ■ (4.1)

An integrity basis for these crystals classes is formed [3] by the quantities

Jl — ®11 ~t~ ®22 ! J2 ~ Sll®22 Sl2 ) J3 = Sll[(Sll ~\~ 3s22) 12Si2] ,

J4 ~ S33 , 1/5 = S3i -f- S23 , J6 — ^23(^23 3s3i),

Jt ■— (su ^22)^23 ~f" 2-S'j2-53i , Jg = s22S31 Si]S23 2S23S31S12 , (4.2)

J9 — (Sn $22)831 2S12S23 , J\a — 3s12(sn S22) 4S]2 ,

J \i = S3i(s3i 3S23)

and
= s3i[(sn ~t~ S22) "t" 4(s12 S22)] 8suSi2S23 ,

K2 = s23[(sn "I* S22) ~t~ 4(si2 S22)] + 8S11S12S31 , (4.3)

K3 = (Su ^22)523^31 ®i2(^23 S31).

It may be readily verified that

J5K, = {j\ — 4:J2)Jll + 4 JSJg ,

JsK2 = VI ~ 4W. + 4(JiJ5 - J8)J7 ,

2J5K3 — JtJ\i J9 '

The values of /£, , K2 and K3 are then specified by the values of ■ , Jn unless
^5 = s3i+s23 = 0. This can occur only if s3i = s23 = 0 in which case Ki = K2 = K3 = 0. Hence,
the values of K1 , K2 and K3 are specified in all cases by the values of , • • • , Jn .
Consequently, the quantities Ji , • • • , JX1 defined by (4.2) form a functional basis for
the trigonal-pyramidal and rhombohedral crystal classes. Since J1 = — ./4 from (1.2),
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any yield function F is expressible as a single-valued function of the quantities J2, • • • , Jn
defined by (4.2).

(ii) the ditrigonal-pyramidal (I, R,) • (I, S, , S2), trigonal-trapezohedral (I, D,) •
(I, Si , S2) and hexagonal-scalenohedral (I, C, , Dj • (I, Si , S2) crystal classes. It is
seen [3] that for these crystal classes the requirement (1.3) is to be satisfied for the six
sets of s given by (4.1) and

(§11 > ®22 ) S33 ) §12 , §23 , §31) = (Sn , S22 , S33 , §12 , S23 ) S31) ,

(3I/2 gl/2 gl/2

JSh + jS22 -F 2 S12 I ~t~ iS22 S12 > S33 ; 5S12 ~F ~~j~ (§11 S22) ,

gl/2 gl/2 \

5S23 ~F ~~2~ S31 , 5S31 -F S23) ■ (4-4)

sAn integrity basis for these crystal classes is formed [3] by the quantities Ji , • • • , J,
and K2 defined by (4.2) and (4.3). From the previous section, it is seen that the value
of K2 is completely specified in all cases by the values of J1, • • • , Js. Hence, the quanti-
ties J i , • • • , J a defined by (4.2) form a functional basis for the ditrigonal-pyramidal,
trigonal-trapezohedral and hexagonal-scalenohedral crystal classes. Since •/, = — J4
from (1.2), any yield function F is expressible as a single-valued function of the quantities
J2 , • • • , J8 defined by (4.2).

(Hi) the trigonal-dipyramidal (I, R3)-(I, Si , S2), hexagonal-pyramidal (I, D3)-
(I, Sj , S2) and hexagonal-dipyramidal (I, C, R3 , D3) • (I, S! , S2) crystal classes. It is
seen [3] that for these crystal classes the requirement (1.3) is to be satisfied for the six
sets of s given by (4.1) and

(§ii , §22 ) §33 J §12 > §23 ) §3l) = (Sn , S22 ) S33 , Sj2 , S23 , S31),

(3I/2 gl/2 gl/2

ISU "1" t®22 "F 2 Sl2 ! ZS1) ~t" IS22 ± s 12 , S33 , 5S12 ± ~- (sn — s22),

31/2 gl/2 \

2^23 S31 , ^53i "F 2 ^23 ) * (4.5)

(4.6)

An integrity basis for these crystal classes is formed [3] by the quantities

J1 Sn "i" S22 , J2 5hS22 ^12 , J3 ~~ Sll[(Sll "I" 3s22) I2S12],

J4 = $31 *4" S23 , J5 — S33 , J6 = S31 (§31 3^23) ,

J7 — S11S23 ~f~ S22S31 2s.,:i,s31s! 2 ,

J8 = Sn(s3i 3^23) ~1~ 2S22$3l(S:il + 3S23) 8.S] 2S23S3I j

J 9 = Si2(s31 S23) (s22 Sli)S3iS23 ,

J10 — 3Si2(Sn S22) 4Si2 , J11 — S3iS23[3(S3i S23) 4S31S23]

and

Ai ^3i[(^n ~f~ ^22) 4(S22 Si 2)] 2sn[(sn 3s22) ($31 "I" S23) 4S23S31S12] ,

A2 ~ ^23®31 [(^11 ~f~ ^22) 4(s22 ®12)] -f- 4ShSi2(S23 S31) , (4.7)

A3 = S12IXS31 ~f~ S23) "1" 4^23(^31 S23)] 4S3iS23(Sll S22).
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It may be readily verified that

J\Ki = (J\ - 4Ja)Ja - 2JJJs - 8 J J* + 4J7JS ,
j\K3 = (3/4 — 2J6)Jg — J\J\J 11 + 2/7J11 ,

(J2i - 4J2)K2 = (2/3 - 3J? - 47, W, - Ji/4/io + 2J7Jio .

The values of K1 and K3 are then specified by the values of J1 , , Ju
unless J4=S3i+S23 = 0. This can only occur if s3i = s23=0 in which case K1 = Ki=0.
Similarly, the value of K2 is specified by the values of Jx , • • • , Jn unless

Jl ~ 4J2 = (s„ - s22)2 + 4& = 0.

This can occur only if Sn = s22 and si2 = 0 in which case K2 = 0. Hence, the values of
K1 , K2 and K3 are specified in all cases by the values of ,h , • ■ • , Jn and consequently
the quantities Ji , • • • , Ju defined by (4.6) form a functional basis for the trigonal-
dipyramidal, hexagonal-pyramidal and hexagonal-dipyramidal crystal classes. Since
Ji = —JB from (1.2), any yield function is expressible as a single-valued function of
the quantities J2 , • • • , J11 defined by (4.6).

Mises [1] states that, for these crystal classes, any yield function F is expressible in
terms of the quantities

2V, = Sn s22 2S33 , 2V2 = (Sn s33) "1~ (s22 S33) 2si2 ,

Na ~ (Sn S22) "I- 4Si2 , N4 — S23 4" S31 ,

N5 — •3.S23S31 (S23 S31) I6S23S31 •

It is readily verified that 2V3 = 2JV2 — 2V, and hence only four of the 2V, , ■ • • , iV5 are
functionally independent invariants. Since an invariant which is functionally inde-
pendent of the 2V" 1 , ■ • ■ , 2VS is readily determined, e.g. J3 , it is clear that not every
yield function is expressible as a function of the 2V, , ••• , 2VS .

(iv) the ditrigonal-dipyramidal (I, R, , R3 , D2)-(I, Si , S2), dihexagonal-pyramidal
(I, R, , R2 , D3) ■ (I, S, , S2), hexagonal-trapezohedral (I, Dj , D2 , D3) • (I, Si , S2) and
dihexagonal-dipyramidal (I, C, Rx , R2 , R3 , D, , D2 , D3) • (I, S, , S2) crystal classes.
For these crystal classes the requirement (1.3) is to be satisfied [3] for the twelve sets
of s given by (4.1), (4.4), (4.5) and

(§11 , §22 1 §33 , §12 , S23 , §31) = (Sn , S22 ) S33 , S12 , S23 , S3I),

(gl/2 gl/2 gl/2

jSu + jS22 S12 , fSll + 1S22 ± ~2~ S12 ) S33 > iS12 T (Sll — S22))

gl/2 gl/2 \

5S23 i 2 ®31 ' 5®3i i 2 ®23J' (4-8)

An integrity basis is formed [3] by the quantities J, , • ■ • , J8 and Ki defined by (4.6)
and (4.7). From Sec. 4 (iii), it is seen that the value of Kl is specified in all cases by the
values of Ji , • ■ ■ , Js . Hence, the quantities J1 , • • • , Js defined by (4.6) form a func-
tional basis for the ditrigonal-dipyramidal, dihexagonal-pyramidal, hexagonal-trapezo-
hedral and dihexagonal-dipyramidal crystal classes. Since J1 = —Jb from (1.2), any
yield function is expressible as a single-valued function of the quantities J2 , • • • , J&
defined by (4.6).
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