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SINGULAR CASES IN THE OPTIMUM DESIGN OF FRAMES*

BY
GEORGE J. MEGAREFS anp PHILIP G. HODGE, JR.
Illinots Institute of Technology

Abstract. Many previous studies in optimum design have determined the param-
eters so as to set equal to zero the first variation of the property to be optimized. The
present paper shows that in some simple cases the minimum value may not be a point
of zero variation and that points of zero variation may be relative maxima as well as
minima. A general theoretical explanation of such behavior is given and applications are
made to simple frames.

1. Introduction. The problem of optimum design has been the topic of numerous
recent papers 1 to 18**. Several of these papers [1, 2, 5, 6], have been concerned with a
structure with only a finite number of degrees of choice, such as a frame each of whose
members must have a constant cross-section. Other papers investigate continuously
varying beams and frames [15, 16], plates [3, 8, 11, 12, 13], and shells {4, 10, 14]. General
theoretical results have been obtained in [7, 9, 17, 18].

Most of these studies have been confined to the problem of finding the minimum
volume (or some quantity, such as weight, proportional to the volume). The present
paper, however, is concerned with the general problem of minimization of a structural
property without restriction to any particular property.

Specifically, we consider a beam or frame structure whose cross-section varies con-
tinuously. The safety of the structure is assumed to depend only on the magnitude of the
bending moment and to be exhausted with the onset of plastic collapse.

Although a specific simple example is considered in Sec. 4, the aim of the present
paper is to investigate general restrictions on the optimization of the structure, rather
than to design any particular structure. It is shown that the critical feature in the mathe-
matical problem which defines optimization is the order at which the optimizing property
tends to zero (or to any other fixed value) as the bending moment tends to zero at discrete
points or over finite portions of the structure. Specifically, it is shown that depending on
the order of this zero the optimizing problem may exhibit a variety of methematical
behavior varying from complete regularity with a unique solution corresponding to an
analytical minimum to extreme irregularity with relative maxima and minima, non-
analytic minima, and non-unique solutions. These types of behavior are illustrated in a
simple example in Sec. 4. In conclusion, some inferences are drawn as regards the ex-
tension of these results to two and three dimensional structures.

2. Statement and formulation of the problem. We consider a beam or frame struc-
ture S whose shape, support conditions, and loading are given, but whose cross-section is
given only to within a single parameter ¢. The problem of optimum design is to determine
¢ at each point s of S so that a certain property of the structure is minimized, subject to
the condition that the structure is safe.
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‘Without loss of generality we shall refer to cost as the property to be minimized
since a suitable definition of operating cost could require minimum weight or any other
desirable property. Further, we shall assume that the cost is a fixed constant (which does
not affect the optimization problem and so may be ignored) plus the integral over S of
the unit cost, and that this latter is a function of the section parameter gq. Thus we are
ignoring any possible restriciton on the cost gradient, cost differences in welding different
type sections, etc.

As safety criterion we require only that the structure be safe against plastic collapse,
i.e. that the existing moment in each section be, in absolute value, equal to or less than
the fully plastic moment. Since this moment is fully determined by the section, it is a
function of g.

In order to make the optimization problem meaningful, we assume that the unit
cost and the fully plastic moment are strictly monotonically increasing functions of q.
If this is the case ¢ can be eliminated from the problem and the unit cost F written as a
strictly monotonically increasing function F(M,) of the fully plastic moment M, . We
further assume that F(M,) is positive, twice continuously differentiable (except, possibly,
at the origin), strictly convex or concave (F”’ > 0, F"’ < Q0 or F” = 0 for all values of M),
tends to infinity when M, does, and is zero for M, = 0. We note that this last restriction
is unessential, for if F(0) = F, # 0, F, may be included in the already ignored constant
and we may take the quantity F(M,) — F, as unit cost.

A statically admissible state of stress is defined as any moment distribution which is
in internal and external equilibrium with the loads P. If any statically admissible state
of stress is taken to be fully plastic, ¢ will be known at each point of the structure and a
design thus defined. Its total cost, to within an additive constant, is

1y = [ FM@) ds. @.1)

The optimization problem, then, is to determine a particular statically admissible state
of stress M*(s) which minimizes I.

3. Analytical properties of the cost. It is well known (19) that all statically ad-
missible states of stress arising in the structure S under the loads P can be expressed in

the form
M) = M) + c.Mi(s) (3.1)

and that all states of stress of this form are statically admissible in the structure S under
the loads P. In (3.1) the summation convention is understood to apply over the whole
range 1,2 - - -, nof the repeated index 7, n being the degree of redundancy of the structure;
M (s) is some arbitrary, statically admissible state of stress; M ;(s) » linearly independent
states of self stress in equilibrium with zero load; and ¢; are » arbitrary constant co-
efficients.

With (3.1) introduced into (2.1) the cost becomes a function of the coefficients o,
and assumes the form

Iy, o, oo y0) = [ FUMA®) + M) ds. (3.2)
The optimization problem is thus reduced to finding a set of values of the coefficients c;

which minimizes I. Before attempting its solution we shall study the analytical properties
of the cost as a function of the variables ¢; .
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The expression (3.2) and the restrictions imposed on F lead to the immediate con-
clusion that I is a positive single valued function of the ¢; .

It is not difficult to prove that I is also continuous and bounded for all bounded sets
of values of the variables o; and that it may grow beyond all bounds only if the absolute
value of at least one of the variables does so.*

As regards differentiability, we may distinguish several cases depending on the order «
at which the unit cost F(M,) tends to zero as the fully plastic moment M, does so, and
on whether the existing bending moment in the structure vanishes at discrete points or
over finite portions of the structure.

(#) If @ > 1, the cost is continuously differentiable with respect to all the variables
¢; , and for all sets of values of o; . Its second differential (whether continuous or dis-
continuous, bounded or infinite) is always positive. The problem then admits of only
one extremum which is an analytical minimum that can be determined by setting dI = 0.

() If 0 < @ < 1, the cost is continuously differentiable with respect to all the
variables o; for all sets of values of ¢; for which the bending moment in the structure
vanishes only at discrete points or not at all; however the cost may possess several
relative maxima and minima. For the sets of values of the variables ¢; for which the
bending moment vanishes over finite portions of the structure, the cost possesses a non
analytical relative minimum and its first derivatives exhibit an infinite discontinuity
from — » to 4+ =.

(#2) If @« = 1, the cost is continuously differentiable with respect to all the vari-
ables ¢, except for those sets of values of ¢; for which the bending moment vanishes over
finite portions of the structure. For these sets, the first derivatives with respect to the
variables ¢; exhibit a finite positive step discontinuity and the cost may possess a non-
analytical minimum; but for no sets of values of the variables does it possess a relative
maximum.

(#v) The possibility o < 0 has been excluded by the assumption that F(M,) is zero
for M, = 0 and strictly monotonically increasing.

It is evident from the above statements that methods based upon finding locations
where dI = 0 may not be effective in finding the minimum value of I in some cases where
0 < a < 1. Indeed, such a procedure would conceivably lead to no solution at all, to a
relative maximum or to a relative minimum which is not the absolute minimum. That
these types of undesirable behavior may actually occur in simple cases, is shown in the
following section.

4. Example. As an example of the types of behavior discussed in the preceding
section we consider the frame in Fig. la. It is only once statically indeterminate and as
redundant we choose the horizontal reaction at the hinged supports; it will be indicated
by ¢, . There exists only one state of self stress as shown in Fig. 1b; the cost is a function
of only one variable and its graph can be drawn easily to exhibit the features described in
the previous section. M, is depicted in Fig. 1e¢, and Figs. 1d, e, f are representative of the
statically admissible states of stress that obtain in the structure when the redundant lies,
respectively, in the regions

¢ < _)‘NP) (d)
—>‘F'P <ea < O) (e)

*Precise statements and complete proofs of the analytical properties of the cost are to be found
in the Appendix A.
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FIG.EI. Portal Frame under two Loads. (a) Loaded Frame; (b) State of Self Stress; (c) Basic Statically
Admissible State of Stress; (d), (e), (f) Typical Moment Distributions.

0<a, 0

X being the ratio L/H.
As a simple class of functions which exhibit all indicated types of behavior, we choose

FM,) = M), 0<a<ll. 4.1)
We find it convenient to introduce dimensionless quantities
n = 3+ DI/P°L*™), &= c/QAP). (4.2)

It then follows easily from Egs. (3.2), (4.1) and Fig. 1 that the dimensionless cost and its
first derivative are

7= (8" —(—p =9+ @+ DA = p(—p — 5" + (—H/A,
dn/dg = —(@+ D=5 — (—p = + a(l — W)(—p — 9]
—a(=H*7/A, for £< — p;
7= (="' + W+ + @+ DA - Wi+ "+ (-5,
dn/dt = —(@+ D=9 — w+H* — al — W+ 9]
— (=N, for —p <ELO;
7= ="+ @+H"+ @+ DA = wWu+H+ @O,

dn/d = —(@+ DO — w+H* —al — Wi +5H*7]
+a® 7'/, for 0L
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F1c. 2. Singular States of Stress in Portal Frame.

From the expressions for the derivative it is immediately obvious that at the points
¢ = —pand £ = 0 a step discontinuity will appear in the slope of 5. If @ = 1, this step
discontinuity will be 2a(a + 1)(1 — u) at the first point and 2a/A = 2/\ at the second,;
if & < 11t will be from — o to 4 = at both points. A kink or cusp will therefore develop
at each of these points; they are due to the vanishing of the bending moment between
the loads or along the columns, respectively. The states of stress which produce these
singularities are shown in Fig. 2. The kinks and cusps can be seen in Figs. 3 and 4.

In Fig. 3 u = 0.8, a = 1; the graphs of 5 have been drawn for the values of A = 0.3,
0.5, 0.7. For A < 0.5 the kink at £ = 0 represents the optimum solution; it leads to the
unrealistic design of vanishing column section and a beam acting as simply supported.
As ) increases beyond the value of 0.5 the minimum occurs at a regular point gradually
moving away from £ = 0. The value of this minimum becomes gradually smaller than
7(0) = 0.96 and the corresponding designs gradually transfer material from the beam
to the columns.

In Fig. 4 4 = 0.8 and a = }; the graphs of 4 have been drawn for the valuesof A = 1,
1.585, 2.151, 4.167. In all cases there exist more than one relative extrema. For A < 2.151
the governing minimum is the cusp at ¢ = 0; it leads to the same unrealistic design as
before: vanishing columns and the beam acting as simply supported. For A > 2.151
the governing minimum is a regular one occurring at a point £ between zero and

205
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205

A*07

207

(-4 0.919

-1 -o8 o !

F1c. 3. Non Dimensional Cost Curves of Portal Frame for a = 1.
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—u = —0.8, where the slope of 7 is zero. For A = 2.151 there exist two distinct solutions
with the same minimum cost 7(0) = 7(—0.3175) = 0.984. All values of ¢ between these
two yield a bigger 5 and can never lead to an optimum design, whatever the value of A
may be. The transition here from one mode of design (vanishing columns, simply sup-
ported beam) to the other is abrupt. It is also important to note that for A < 1.585 the
cost exhibits two relative minima and one maximum; for A > 1.585 there exist three
relative minima and two maxima. When seeking the optimum solution, therefore, it is not
sufficient to find a relative minimum; one must also prove that this is the governing one.
Furthermore in both cases « = 1 and @ < 1, minima do not occur at regular stationary
points, where the derivatives are zero; they may be found at singular points and such
minima may be governing for a wide range of variation of the parameters of the problem.

5. Conclusions. It hasbeen shown generally, for a wide class of cases, and illustrated
by a simple example, that the problem of optimum design of a beam or frame structure
with continuously varying cross-section is a highly complicated one. Only when « > 1
will the solution of the problem always be represented by the unique analytical mini-
mum of a regular convex function. When 0 < o < 1, the cost may exhibit relative
maxima and minima, as well as non analytical minima at which the first differential is
discontinuous or even unbounded. The non analytical minima represent critical modes
of design which may persist for a range of variation of the shape or the loading of the
structure and then give suddenly way to fundamentally different designs. At the transi-
tory stage, more than one distinct design may exist for the minimum cost; in no sense,
therefore, can uniqueness of solution be claimed. In the intermediate case @ = 1 the
behavior is less irregular, and procedures are available [16] for finding the absolute mini-
mum. However, since the optimum design may be neither analytic nor unique, the
powerful methods of variational calculus are not generally applicable.
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F1a. 4. Non Dimensional Cost Curves of Portal Frame for & = 3.
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That the range 0 < o < 1 is not unimportant is indicated by the fact that most
minimum volume designs lead to values in this range. Thus if the shape is given,
F = B,(M,)*”?; for a rectangle of given width F = B,(M,)"?; for a rectangle of given
height or an ideal sandwich or I section, F = B;M, where B, , B, , B; are constants
depending on the yield stress and the constant parameters of the section.

It is interesting to note that two recent papers [17, 18] show that some of the above
features are also exhibited by two dimensional structures, plates and shells. Although
their approach is different it seems that minimum volume design of a sandwich section
according to the Tresca yield criterion corresponds to the case a = 1 of the present
paper and that minimum volume design of a solid plate according to the same conditions

corresponds to a = 3.

APPENDIX A

PROOF OF THE ANALYTICAL PROPERTIES OF THE COST

We recall that we have taken the unit cost F(M,) to be a positive, strictly mono-
tonically increasing function of the absolute value of the bending moment, twice con-
tinously differentiable (except possibly at the origin where F(0) = 0) and either strictly
convex (F'' > 0) or strictly concave (F'’ < 0) or linear (F"' = 0).

Under these conditions it is easy to show that the cost is a continuous function in all
the variables o; , by simply extending the theory of integrals depending on one param-
eter as given in standard textbooks, for instance [20].

Considering next those sets of values of ¢; for which the bending moment does not
become zero anywhere in S (although it may change sign at points of step discontinuity)
it can be shown in the same way that, for these sets of values of ¢; , the cost is a differ-
entiable function and that

olfoc = X [ FUM@NM ds— T [ FOM@DM, ds, (A1)
&I = (0°1/3600) de; des = [ F*(1M()DM M, de; doy d. A42)

where S,. denote the portions of the structure over which M(s) > 0 and S,_ those
over which M(s) < 0. As M ;M ,dc;dc, is a non-negative quadratic form, the cost is also
convex or concave in the same sense as the unit cost.

Consider next those sets of values for which the bending moment is zero but only
at a finite number of discrete points s, of S. If the structure is composed of straight
elements and the load of concentrated forces, the order of zero at these points will be one.*

If each s, is enclosed in a small interval L, , equations (A.1) and (A.2) will still be
applicable to the part of the structure lying outside these intervals. Inside each of them-
provided its length is chosen adequately small-the integrand of I can be approximated to
any desired degree of accuracy by an expression of the form

F(M(@$)|) = |la + c.a; + (b + ¢:b)s|”

where a, a; , b, b; are constants. Taking, without loss of generality, the left end of the
interval as the origin of s and a + ¢;a; > 0 (hence b + ¢,b; < 0, Fig. 52) we obtain for

*The effect of a zero of a higher order is discussed in Appendix B
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the contribution of L, to the index and its derivatives
I, = —{la + cia; + (b + c:b)L,|**" + |a + cia:|*"'} /(@ + DB + ¢:b), (A3)
oI,/dc; = bi{a + cias + (b + ¢:b)L,|**" + |a + cias|*} /(@ + 1)(b + ¢:b)*
+ {(@; + b,L,) |a + ciai + (b + c.b)L,|" — a; la + ca*} /(b + ),  (A4)
8’I,/dc;0c, = —2b;bi{la + c.a; + (b + c:b)L,|**" + la + cias|**'} /(@ + Db + ¢:b))?
— 2b;{(a; + b;L,) la + c.a; + (b + ¢:b)L,|* — a; |a + ciai|*}/(b + ¢:b.)°
— af(a; + b;L)(ax + biL,) |la + ciai + (b 4 c.b)L,|*7
+ a;a; la + cia:|*7'}/(b + ¢by). (A.5)

Let now L, — 0 as b 4+ c¢;b; remains constant; then also a+ a.c; — 0 and
a+ o,a; + (b + 6:0.)L, — 0.

(@) If « > 1, « + 1 and « are positive and o — 1 non-negative; all terms in the ex-
pressions (A.3), (A.4) and (A.5) tend to zero and the contribution of each L, can be
made arbitrarily small while the expressions (A.1) and (A.2) are applicable over as large
a portion of the structure as required. At the limit they are valid over the whole structure
yielding finite and continuous values for the cost and its first and second derivatives.

() If 0 < @ < 1, o + 1 and « are still positive but o — 1 is negative; the previous
argument is applicable only to the first derivatives which, thus, are still finite and con-
tinuous and can be obtained from (A.1). The second derivatives however are neither
continuous nor can they be obtained from (A.2); we may gain some information about
their behavior by taking the interval L, fixed and varying ¢; so that the zero point of the
bending moment disappears at the right hand end of the interval (Fig. 5b). The signifi-
cant terms for this case are

621,/60;30k ~ a{(a; + biL,,)(ak + bkLp) la + C;Q; + (b + c;b;)L,'a—l
+ a;ax |a + c.a:|*7'} /(b + ¢.:by). (A.6)

Comparing (A.5) and (A.6) we see that, as the zero of the bending moment appears at
the right end of the interval L, , the second derivatives jump from — « to + « (Fig. 5¢),
or vice versa if b + ¢;b; > 0. From then onwards they remain finite, but may change
sign or develop again infinite discontinuities as the bending moment tends to zero at
other points of the structure. The cost therefore may exhibit oscillations and hence have
more than one relative extrema; each extremum is analytical and can be obtained by
setting the first derivatives equal to zero.

Finally consider the sets of values ¢; for which the bending moment is zero over
finite portions of the structure. An adequately small variation Ac¢; will then produce such
a small bending moment over parts or the whole of the above portions, say S,, , that
the cost variations can be expressed, with adequate accuracy as*

Al = zfs |Ac,M ;" ds = |Ac;]® Z[S IM,|° ds.

*The summation convention does not apply to the rest of this section.
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F1e. 5. Second Variation of the Cost. (a) State of Stress after Occurrence of Zero; (b) State of Stress
before Occurrence of Zero; (¢) Second Derivative of the Cost as Function of a Redundant.

The first derivative then is
dar . Ac;|® .
dc, ~ lim Ac, ;fs,o |M;|*ds as Ac; — 0.

If &« > 1, then dI/dc; = 0;if a = 1, then dI/dc; shows a positive finite jump,

6 =2 Zfs IM,|*ds  (Fig. 6a);

if @ < 1, then dI/dc; jumps from —  to + o (Fig. 6b).

It is evident, in the two last cases the cost may exhibit a nonanalytical extremum
which has to be a minimum.

Classifying, finally the above results with respect to the values of a we obtain the
statements of Section 3.
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I
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(b)

B ¢;

Fi1a. 6. Discontinuities in the First Variation of the Cost. (a) For e = 1; (b) For0 < « < 1.

ArPENDIX B

EFFECT OF THE ORDER OF ZERO ON THE DIFFERENTIABILITY OF THE COST

If the order at which the bending moment becomes zero at discrete points of the
structure is 8 > 1, then the expression for the unit cost in a small interval around this

point will be of the form
F(IM@©) = |4 + BS|"
The integrals in (A.1) may then be divergent when
1—-aB>1. B.1)

The approach used in Appendix A, however, is no longer practicable as the integrations
which led to the expressions (A.3) (A.4) and (A.5) do yield transcendental rather than
algebraic functions. Although it can be shown that even in the case when the first deriva-
tives become unbounded they are continuous, in the sense that they tend to the same
infinite limit on both sides of the point of zero bending moment, we will restrict our-
selves to illustrating this case by a simple example as it does not introduce a possibility of
an extremum.

Consider a fixed end beam under uniformly distributed load (Fig. 7a). Figs. 7b, ¢
show a state of self stress M, and a statically admissible state of stress M, . Figs. 7d, e, f
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are representative of the possible states of stress. Taking « = % and using dimensionless
quantities

£=2/(wl?), n=IV2/L"Vw,
we obtain for these three types of stress, respectively
n=(=9""+E+ 1 log [(=&-D"/QA+(-9")], £<-1
1= (=" +E+1D log [E+1D"/Q+ (") +E+1D, -1<£<0;
n=@®"+E+1 arcsin (1/¢+ D), 0<&
These results are plotted in (Fig. 8). For the value § = —1(c = —wL?/2) the state of

——+ o
2L
1 L
(b)
o
S

m
G (d)

/I\ (e)

(f)

¢ /"\
gt / \ @

F16.7. Fixed End Beam under Uniformly Distributed Load. (a) Loaded Beam; (b) State of Self Stress;
(c) Basic Statically Admissible State of Stress; (d), (e), (f) Typical Moment Distributions; (g) Singular
Moment Distribution.
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Fia. 8. Non Dimensional Cost Curves of Fixed End Beam.

stress has a zero of order 2 (Fig. 7g) and the graph of 4 shows an infinite slope as antici-
pated by the criterion (B.1)

1—ap=(>10-%2=1

There is, however, no extremum at this point.
For the sake of comparison the curve of 7 for @ = 1 is also shown in Fig. 7; as antici-
pated it shows no singularities of slope.
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