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OSCILLATIONS OF A PENDULUM UNDER PARAMETRIC EXCITATION*

BY

RAIMOND A. STRUBLE
North Carolina State College, Raleigh, N. C.

1. Introduction. The motion of a simple pendulum which is excited parametrically
by vertical oscillations of its support is governed by the nonlinear equation (see Fig. 1.)

8 + ^>o + —j^J sin 6 = 0, (1)

where dots indicate time differentiations, o>0 = (g/L)1/2 is the natural frequency of
small (free) oscillations of the pendulum, £ is the displacement of the pendulum support,
L is the length of the pendulum and 6 is the angular displacement of the pendulum from
the vertical. The special case £ = £0 cos ut of simple harmonic excitation was examined for
periodic (subharmonic) solutions by Skalak and Yarymovych [1], Inasmuch as their
analysis was limited to the study of the periodic solutions it would, perhaps, be ap-
propriate to present an analysis of (1) which encompasses other solutions. For the sake
of brevity we will be concerned only with the primary resonant solutions when the
exciting frequency co is nearly twice the natural frequency co0 • Our methods, however,
apply quite generally (see [2], [3], [4]).

If we introduce the dimensionless time r = a>0t into (1) and put

e = Zo/L, 6 = t1/2X, v = w/o)0,

Fig. 1. Simple pendulum with oscillating support.

*Received Oct. 15, 1961; revised manuscript received Oct. 1, 1962. Work sponsored by the U. S.
Army Research Office (Durham).
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we obtain the equation

X" + (1 - r,\ cos „r)(x - ~ - ■ ■ ■ ) = 0, (2)

where primes indicate r differentiations. Treating c as a small quantity, it is possible to
develop a general perturbational solution of (2) in the form of an asymptotic* series

X = a cos (r — <i>) + eXj + £2X2 + • • • + eNXN (3)

in the perturbation parameter e. The asymptotic expansion (3) is determined by the
familiar process of successive approximations, with certain innovations. For e = 0, (2)
possesses the elementary general solution X = a cos (r — $), where the amplitude a
and phase $ are arbitrary constants. For e ^ 0, one permits slow variations in each of
a and $ and proceeds to determine these variations successively to increasing orders in
po\vers of e together with the additive corrections Xi , X2 , • • • , XN . The two constants
of integration for the general solution are conveniently assigned to the variable param-
eters a and $ and each of the additive corrections Xi , X2 , • • • , XN is then expressed
uniquely in terms of a, 4> and the independent variable r. We illustrate the procedure
in the following sections. The leading term a cos (r — <3?) of the expansion (3) is referred
to as the principal term of the solution.

2. First order equations. Substituting the expansion (3) in (2) results in the equation

[2a$' + a" — a(3>')2] cos (r — $) — [2a' — 2a'$' — a$"] sin (r — $) + «(X" + XJ

= COS (r — <J>) + cos 3(r — 4>) + ^7^ COS [(1 + t])T — $]

2 2

+ cos [(?? — 2)r + 2$) cos (r — 3>) — sin [(77 — 2)x + 2$] sin (r — <f>)

+ 0(e2), (4)

where only terms through the first power in e are exhibited. In (4) we have used the
elementary identity

COS [(1 — ri)T — <J>] = cos [(»/ — 2)r + 2<i>] cos (r — <f>)

— sin [(?? — 2)r + 2<3>] sin (r — $) (5)

since we wish to examine the resonance phenomena associated with values of i) near 2.
Thus the factors cos (r — <I>) and sin (r — $) in (5) depict primary oscillations while their
coefficients exhibit only slow variations.

An examination of the explicit terms in (4) suggests the following distribution
3 2

20$' + a" - a($')2 = ~ cos [(ij - 2)r + 23>]2
2

2a' — 2a'3>' — a<£" = sin [(77 — 2)r + 2<£]

(6)

and

XI' + X, = ^ cos 3(r - $) + cos [(1 + v)r - $]. (7)

*We employ the term asymptotic as in [5].
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Equations such as the first of these are called variational equations while an equation
such as the last is called a perturbational equation. At each step of the iteration process
the variational equations are associated with the fundamental harmonic terms cos (r — <f>)
and sin (r — <3?) and the perturbational equation with the remaining nonresonant terms.
Should a term appear which is "nearly" resonant, such as cos [(1 — jj)t — <£] above
for -q near 2, it is to be associated with the fundamental harmonic terms. In this way all
potentially resonant or nearly resonant terms which would lead to either secular terms
or small divisors in the additive perturbations Xx , X2 , • • • , XN are treated in the
variational equations. The additive perturbations depict "higher" harmonics of the
motion and are referred to as short-period perturbations, a designation borrowed from
celestial mechanics. The variables a and $ exhibit only long-period perturbations. These
are usually referred to as beats.

It is readily verified that any solution of the reduced system

= if + i C0S liv ~ 2)t + 2$]' a' = ^Sin Kv ~ 2)r + 2$] (8)

satisfies (6) to first order in e provided the resonance "detuning" | 77 — 2 | is treated as a
small quantity of first order in e. This defines the primary resonance region and (8) is
then conveniently re-expressed in the autonomous form

1 , . a2 if 1 , ri2a . . .-y = -m + — + — cosy, -a' = —sin?, (9)

with 7 = (t] — 2)r + 2$ and m = (2 — ij)/e. It is clear that the variations in a and 7
are slow, inasmuch as only the slow time er enters into (9). The long-period perturba-
tions exhibited by a and y (and hence <I>) are described to first order in e by (9). The
corresponding short-period (additive) perturbation Xx is described by (7). The latter,
of course, need only be accurate to zero order in e.

3. First order solution. Stationary oscillations (3) correspond to singular (point)
solutions of the variational system (9). These occur for sin y = 0 and

—

or, with 7] = 2 — em, for

= m =F 4(2 - em)2. (10)

This is the bifurcation equation for the quasi-harmonic system (2) and to each real
positive number a given by (10) there corresponds a periodic solution of (2) of amplitude
approximately a. The frequency (in dimensionless time) of the principal term a
cos (t — $) becomes 1 — d$/dr = 1 — (2 — »;)/2 = t]/2, since y = (r? — 2)t + 2$ is
constant. In fact, the principal term may be written in the alternate forms

a cos (r — $) = a cos \{t)t + 7) = a cos + 7).

Thus, the frequency of a periodic solution, corresponding to the bifurcation equation (10),
is a | subharmonic of the excitation frequency.

Nonstationary oscillations (3) correspond to nontrivial solutions of the variational
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system (9). These are readily obtained after eliminating r in (9). Expressed in the differ-
ential form

2 2 3 2

sin ydy — (— ma + — + -— cos 7) da = 0,
4 o Z

the general first integral
4 2 2

2 . . 77 d „N-ma + — H—— cos7 = c, (11)

with c an integration constant, is obtained immediately. The phase-plane curves defined
by (11) are illustrated in Figures 2-6. In these plots, a — a cos 7 and 0 = a sin 7, so
that a and 7 are the natural polar coordinates of the «/3-plane. For c large, the phase-
plane trajectories are very nearly the circles a4/16 = 0. As 0 decreases, a variety of
patterns are possible.

If TO < -v/2 = -(2 - em)2/2, i.e. TO < [1 - 2e + (1 - 4e)1/2]/e2 « -2 - 4«,
then the trajectories form a family of concentric ovals closing down upon the origin as
c —> 0. (See Fig. 2). The origin itself is therefore a center and represents a stable position
of equilibrium of the pendulum. In this case, (10) yields no real values for a and so there
are no bifurcation amplitudes.

If | to I < rj2/2, i.e. [1 - 2a + (1 - 4c)1/2]/e2 < m < [1 + 2e - (1 + 4e)1/2]/62,
then (10) yields exactly one real positive number a. The corresponding bifurcation
amplitude is represented by a center on the a-axis at a distance a from the origin. (See
Figs. 3, 4, and 5). In addition to the larger closed trajectories, which tend to the circles
<z4/16 = c as c —> 00, and the smaller closed trajectories, which tend to the center, in
each instance there is an extraordinary trajectory which originates and terminates at
the origin. The origin becomes an unusual singular point whose index is zero. Though it
continues to represent a position of equilibrium of the pendulum, it is no longer stable.

Fig. 2. Trajectories for m < — ij2/2.
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e

Fig. 3. Trajectories for — ir^/2 < m < 0.

Fig. 4. Trajectories for m = 0.
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If m > t] 12, i.e. m > [1 + 2e — (1 + 4e)1/2]/62 £& 2 — 4«, then (10) yields two real
positive numbers a. The larger of these is, as before, a center while the smaller is a
saddle point. A periodic (subharmonic) solution of (2) corresponding to the latter is, of
course, unstable. In this case, there are three families of closed, phase-plane trajectories.
(See Fig. 6). There are the usual large ones which become circular as c —* °°, the small
oval shaped ones which encircle the origin, and the intermediate, rather deformed ones
which eventually close down upon the nonzero center. The origin is also a center. The
three families of closed trajectories are distinguished by separatrices stemming to and
from the saddle point.

As indicated above, the centers and the saddle points of the phase-plane, which
are given by (10), are the bifurcation amplitudes corresponding to stable and unstable
periodic (subharmonic) solutions of (2). In addition, the origin, which corresponds to the
rest position of the pendulum, is stable if | m \ > ij2/2. More generally, nontrivial phase-
plane trajectories depict long-period variations in the amplitude a and phase y (or $)
of nonstationary oscillations (3). The closed trajectories depict periodic variations of the
amplitude a (beats) while the separatrices and the extraordinary trajectories depict
transient (nonperiodic) variations in a. In general, the long-period variations of the
phase y are similar except that y exhibits a secular (time like) variation along each
trajectory which persists in encircling the origin. If a small amount of damping is intro-
duced into the system, the stable centers of the phase-plane become asymptotically
stable foci while the characteristics of the unstable singularities remain essentially as

Fig. 5. Trajectories for 0 < m < ij2/2.
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e

Fig. 6. Trajectories for >;2/2 < m.

Fig. 7. Trajectories for m < — ij2/2, with damping.
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0

Fig. 8. Trajectories for 0 < m < -r]2/2, with damping.

before. (See Figs. 7-9) The subharmonic solutions corresponding to the foci are then
asymptotically stable and depict the steady-state responses. It is interesting to note that
for | m | > v)2/2, the equilibrium (rest) position is a possible steady-state response also,
as in Figs. 7 and 9. In the latter Figure, there are two steady states illustrated.

We complete the integration of the variational system (9) using (11) to eliminate y
from the second equation in (9). The variables then separate and we obtain the elliptic
integral

da2
(12)

r da '! tv . ( , , «-yiIT" ~[c + 'm ~w)_

Thus the square of the amplitude is an elliptic function of t. Once it has been obtained,
7 is given directly by (11). However, it is probably sufficient here to obtain expressions
for the periods of the long-period variations. For this, (12) is written in the form

_ , f 16 da 
67 ±J {(a2 - a2m)(a2M - a2)[(a2 + B)2 + C]}1/2' {16)

where am and aM denote the minimum and maximum respectively of the amplitude for a
particular closed trajectory (11). According to the second equation in (9), these are the
intercepts of the trajectory with the a-axis. The quantities B and C may be obtained in
a variety of forms by comparing the coefficients of the polynomial in a2 under the radical
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in (13) with those of the corresponding polynomial in (12).* If the constant terms and a6
terms are compared, one obtains the forms

B = ̂ 4^ - 16m, C = W " " 16-T-
2 aMam L 2 J

Now during one single period the amplitude a varies from am to aM and again back
to am . Thus the period At of the long-period periodic variation in a is given by the
equation

eA t
CaM

= 32 /J a

da2
{(a2 - a2m)(a2M - a2)[(a2 + B)2 + C]}1

Reduced to standard form [6], this becomes eAr = 64 K(Jc)/l, where

•r/2 doK{k) = fJo (1 - k2 sin2 cr)1

is the Legendre complete elliptic integral of the first kind. When exactly one phase-plane
trajectory is associated with the particular value of the integration constant c, such as the

Fig. 9. Trajectories for rf/2 < m, with damping.

*Note that the leading coefficient (the coefficient of a8) in (12) is — 1 /(16 )2 and this accounts for
the factor "16" appearing in (13).
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cases illustrated in Figs. 2-5, then the divisor I and modulus k are given by the expressions

P _ xy V. _ (<4 - ai)2 - (s - y)2
1 ~XV,k ~ Axy

where

z2 = {aM + B)2 + C, y2 = (a2m + B)2 + C.

When two phase-plane trajectories are associated with the particular value of the inte-
gration constant c, such as certain cases illustrated in Fig. 6, then the divisor I and
modulus 7c are given by the expressions

72 _ /•—2 2 w-2 2 \ 7 2 _ (&M ~
' — [O-M 0-M)\am am), k — , 2 2 \/-2 2\-

Here we denote by am and dM the minimum and maximum of a for the larger trajectory
and by am and aM the corresponding quantities for the smaller trajectory. The periods
for the two trajectories are equal though the motions are quite different.

The first order solution is completed by the additive perturbation Xj . Since the
derivatives of a and <3? are of first order in e, the particular integral

Xl = cos 3^t ~ ^ ~ 2(2 + cos + ^T ~

will satisfy (7) to zero order in e, as required. In any event, X, merely depicts two of the
higher harmonics of the response whether the primary oscillations are stationary or
nonstationary and is not particularly important to an overall understanding of the
motion. It is the principal term a cos (t — $) = a cos f(c°t + 7) which depicts the
essential nature of the motion.

4. Comparison with experiments. The results of some interesting experimental
studies have been reported in [1], These are bifurcation amplitudes A for the variable 6
obtained from a physical pendulum mounted on a vibrating table. The corresponding
theoretical values are given here by the bifurcation equation (10), with A = t1/2a, and
reproduce the experimental values remarkably well as indicated in Fig. 10. In fact, the
agreement here between theory and experiment is somewhat superior to that reported
in [1], This is because the inevitable truncation of the power series for sin d in (1) is a
more serious limitation on the analysis in [1] then the corresponding truncation here in
(2) which is a natural consequence of the order of the asymptotic expansion considered.
The experimental results suggest that the first order solution obtained here is, perhaps,
adequate for most practical purposes.

5. Higher order solutions. Higher order solutions may be obtained by continuing
the iteration procedure. For example, having identified , (in terms of a, $ and r) one
may now retain all terms in (4) through second order in e. Any near first harmonic, such
as in (5), is expressed in terms of the first harmonics with slowly varying coefficients,
and the new variational equations for a and <i> through t are obtained from the resulting
sin (r — $) and cos (r — $) terms. The remaining (second order) nonresonant terms
are incorporated into a perturbational equation for X2 ■ The variational equations will
be as in (6) except for additional second order terms which will appear on the right.
On the left, the higher derivatives a" and $" and the product terms a'$' and ($')2
can be evaluated explicitly, to second order, in terms of a, $ and r using the first order
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BIFURCATION AMPLITUDE A
(DEGREES)

THEORETICAL, REF. til
EXPERIMENTAL, REF. [I]

UNSTABLE SUBHARMONIC
RESPONSE

-4 -2 0 2 4 6 8 10

DETUNING PARAMETER m

Fig. 10. Bifurcation amplitude.

equations (8). Thus, the second order variational system will reduce to (8) except for
additional explicit second order terms on the right. In order to continue the iteration
process, only the perturbational equation actually need be integrated and this is always
straight-forward. On the other hand, the variational system evidently becomes more
involved at each step and integration in closed form of the higher order cases may be
extremely difficult. Fortunately, the important qualitative characteristics of the motion
are generally reflected in the low order systems.
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