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A VARIATIONAL PRINCIPLE FOR NONLINEAR NETWORKS*
By GARRETT BIRKHOFF (Harvard University)

It is the main purpose of this note to describe a variational principle for nonlinear
networks of the kind studied by J. B. Diaz and the author in [1]. It will then be shown
that this principle is closely related to an electromechanical analogy discovered by
Duffin [2], in connection with n-dimensional mass-spring networks.

The notation and terminology of [1] will be used below. That is, a connected network
(oriented graph) N of n nodes A, and r links a; will be assumed defined by an incidence
matriz || ; ||, where &; is +1, —1, or 0 when A, is the initial node, the final node, or
not incident on a;; , respectively. In N, a subset N of boundary nodes is distinguished,
and the set of all links is denoted by L.

It is assumed that, in equilibrium, the current 7; = ¢;(Au;) is a specified continuous
increasing function c;(Awu;) of the potential drop Au; = 2. ;u; across the j-th link.
At each interior node A, (not on dN), the usual node law Z;_, €;3; = 0 is assumed.
At each boundary node 4, , it is assumed that either u, is known or that (on the residual
set 0*N)

E &l = E émci(; &u) = Fi(wy) on 9*N, 1)

where F,(u) is a continuous non-increasing function of u. (The case F,(u) = v, constant
leads to the Neumann problem.)
With the preceding problem, we now associate the function

V= ; Vi(Auy) + § Wiu), @

where the functions V; and W, are defined as the indefinite integrals

Vi) = [T e, Wi =~ [ R s @)

We take as unknowns the values u, = u(4,) at those interior and boundary nodes where
the potential u, is not given.

An easy computation shows that the first variation of the expression (2) defined
by (2') is

*Received October 11, 1962.
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8V = Z c;(Au;) Z € Oup — Z Fy(ws) dus , ®

L

where the variations du, are independent over the nodes where w, is not given.
TueorEM 1. The conditions for equilibrium are equivalent to the variational
equation 6V = 0.
Proof. At a boundary node where w, is not given, the coefficient of éu, in (3) vanishes
if and only if

; &ty = Fa(w), 4)

summed over the links incident with A, . Clearly, equations (4) and (1) are identical.
The proof for internal nodes is identical.

The preceding proof makes use only of the continuity of the functions ¢; and F, ,
which makes valid the differentiation of (2) to get (3). Therefore, the statement of
Theorem 1 is true whether or not the ¢; are increasing and the F, non-increasing functions.

TrEOREM 2. If the functions c¢; are non-decreasing and the F), non-increasing, then
the function V(u) defined by (2)-(2') is convezx.

Proof. It suffices to prove that

Va+v)+ Va —v) —2V@w) = 0. (5)
But, referring to the definition (2)-(2'), we have
szi V,(Aui + Av,’) + V,'(Aui - Av,-) - 2V,(Au,)

[ et + 9 — o8, — 91 ds 2 0

for all j, provided the ¢; are non-decreasing. Likewise,

A2W,. W;,(u;. + U;,) + W,.(u,. - Uh) - 2W;,(u;,)

I

- - f  Faun + 8) — Fawn — )] ds = 0,

provided every F, is non-increasing.

It is interesting that the statement of Theorem 2 is true whether or not the ¢; and
the F, are continuous. It is also interesting to inquire into the conditions for strict con-
vexity: that strict inequality holds in (5). Inspecting the inequalities used in proving (5),
we see

TueoreM 3. The function V(u) defined by (2)-(2') is strictly convex if and only
if the ¢; are increasing functions and the F, decreasing functions.

CororLrAaRY. Under the preceding hypotheses, there is at most one equilibrium
solution of the nonlinear network problem, and this occurs when V has a strict minimum.

For the existence of an absolute minimum to a (continuous) convex function V(u),
it is sufficient that lim,, ;. V(u) = 4+ . Therefore, it is sufficient that all functions
V:(Au;) and W,(u,) should tend to + « with | Au; |, as this will make some terms in
(2) tend to + = with | u |, while the others remain bounded below. We conclude

TueoreM 4. If the functions ¢; are non-decreasing and the F, non-increasing, and
if these functions assume both signs, then V has a minimum.

Note that, since monotone functions are always integrable, continuity is not assumed
above.
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CororrArY. If the ¢; and F, are continuous in Theorem 4, then the network problem
has a solution.

In conclusion, it may be of interest to describe the mechanical analog of the network
problem, whose potential (strain) energy function is ¥ (u). In this analog, the nodes are
represented by smooth rods, whose displacements from given positions are the u; . These
rods are constrained to slide along the w-axis, a constraint which can be imposed by
inserting the rods in a long smooth tube. These rods can then be imagined as joined by
one or more springs, for each link a; whose total stress ¢; (Au;) depends on the relative
displacement of the rods joined by the link a; . This acts equally and in opposite directions
as a force on these rods, as prescribed by the ¢, (thus siress or force is the mechanical
analog of current). At internal nodes, the condition for equilibrium is that the sum
(resultant) of the forces be zero. At boundary nodes, one can suppose externally attached
springs exert a force F, which depends on the displacement of the rod 4, .

This model is very similar to that suggested by Duffin [2], provided the junction
points are constrained to move in one dimension. However, Duffin’s “force functions”
fii(| r; — r; |) were assumed to be defined only for non-negative arguments, to satisfy
f(0) = 0, and to be unbounded. This would correspond roughly to assuming the ¢;(Au;)
to be odd functions tending to infinity with | Au; |, and these assumptions seem to be
unnecessary for the existence and uniqueness theorems stated above. Duffin also con-
siders only the Dirichlet problem (all F, vanish).

Duffin’s hypotheses are, of course, appropriate for networks of springs under tension
in more than one dimension.
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AN INTEGRAL EQUATION OCCURRING IN PLASMA OSCILLATIONS*
By R. S. B. ONG (The University of Michigan)

The stability of single hump velocity distributions in a collisionless hot plasma
without magnetic field is usually shown by considering the linearized Landau-Vlasov
self-consistent set of equations as an initial value problem. The Laplace—or the one-
sided Fourier transform with respect to the time variable is then commonly used in the
analysis. In this method, one needs the analytic continuation of the function considered
beyond its original domain of definition in order to evaluate its inverse transform by
complex contours. This introduces a certain degree of artificiality in the analysis. The
purpose of this article is to show that one can deduce the stability of single hump velocity
distributions by means of an argument which avoids this difficulty.

The one-dimensional linearized problem of longitudinal oscillations of a collisionless
hot plasma without an external magnetic field is described by the following well-known
self-consistent set of equations:

* Received November 5, 1962. This work was performed with the aid of a grant from the National
Aeronautics and Space Administration.



