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CONDITIONS FOR THE SOLUBILITY OF AN ELLIPTIC DIFFERENCE
EQUATION AS AN INITIAL VALUE PROBLEM*

By

K. J. HARKER anp J. LLACER
Microwave Laboratory, W. W. Hansen Laboratories of Physics, Stanford University

1. Introduction. It is understood, in general, that the solution of elliptic partial
differential equations as initial value problems by the method of finite differences is
unsuccessful due to lack of convergence and to instability. However, careful analysis
of a representative problem points out that, when the initial values are analytic, useful
regions of convergence and conditions to assure stability can be found. The theoretical
analysis to be undertaken follows basically the ideas developed by Dahlquist[1]. Laplace’s
equation in two dimensions was chosen as a representative elliptic partial differential
equation.

2. Two-dimensional problem in rectangular coordinates. a) Determination of region
of convergence. Consider Laplace’s equation in two dimensions, with rectangular co-
ordinates z and ¢:

V.4 Vi = 0. | 1
If we define
u=17V,, v=171V,,
we obtain the Cauchy-Riemann equations:
U =0, U = =V .
Further, if we define a complex function of = and ¢ as
W =u = w,
we obtain
W, =u xw,,

and by application of the Cauchy-Riemann equations as given above, we obtain finally
the equation

W, = FiW,, 2

which is equivalent to Eq. (1) in a complex form. Clearly any solution of Eq. (2) can be
readily transformed into a solution of Eq. (1) by simple integration of the real and/or
imaginary parts of W.

For the solution of this problem by the method of finite differences, consider the
triangular mesh given by Fig. 1.

Equation (2) can be approximated by the difference equation
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Fie. 1. Triangular mesh system
Wya - (WI + Wz)/z _ . (Wz - Wl).
Al =TT oA ®)
Particular solutions to Eq. (3) can be written in the form
Wz, t) = ', (4a)
or
W, t) = "™, (4b)

where v and A are real. With these solutions, Eq. (3) becomes

' — cosh NAz = sinh Az

At STV A
or
e’ — cosMAz _  sin Mgz
At Ax
respectively.

By solving for v At and substituting into (4a) and (4b), we are able to eliminate v
and rewrite the particular solutions in the new forms:
W(zx, t) = (cosh AAz F iu~" sinh AAz)"4'¢", (5a)
or
Wz, t) = (cos NAx == " sin NAT)""*'e™, (5b)

where u = Ax/AL.

Consider now initial values W(z, 0) given along the z-axis for the solution of a
particular problem. In using Eq. (3) to find the value of W(z, t) at any point off the -
axis, we can use the fact that this equation is linear. We are able, therefore, to define a
linear operator «, such that

a W, 0)] = Wz, 0

Moreover, we can find representations for «, by considering Eqgs. (5): For t = 0, (5a)
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becomes
Wz, 0) = &~
and (5b) becomes
Wz, 0) = ™.
Operating with «, on these initial values, and comparing with Eqgs. (5) we see that
a, = (cosh AAz F 4" sinh AAZ)' "¢, (6a)
or
a, = (cos NAz =+ u” ' sin AAz)"*¢, (6b)
respectively.

Keeping these results in mind, let us turn our attention to a problem with initial
values
W, 0) = —— @)
’ z — 3. ’
where z isreal and ¢ = ¢’ + ¢”.
From the theory of Laplace and Fourier transforms, we can represent the initial
values of Eq. (7) as integrals, with appropriate restrictions on {:

| S ’
. j;e e d\ for ¢ >z (8)
- f e dn for ¢ <z )
0
- i f MM AN for ¢ <0 (10)
V]
= f e N for ¢ > 0. (11)
0

If we now operate with «, , as given by Egs. (6), on Egs. (8) through (11), and we use
the linearity of the operator to bring it under the integral sign, we obtain the four cor-
responding equations:

Wz, ) = a,(x 1 f)

- - f ¢ % (cosh NAz F du™* sinh NAZ)> AN for ¢ >ez, (12)
0
= f e e (cosh NAz F 4u~'sinh AAZ)"** d\  for ¢ < z, (13)
1]
= —1 f e e (cos NAT £ p7'sin NAZ)At dN for {7 < 0, (14)
0

=1 f e™e ™ (cos NAz & p7'sin AAZ)A dN for ¢ > 0. (15)
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A sufficient condition for the integrals in (12) through (15) to converge uniformly with

respect to At for constant p, is that the absolute value of its integrand be equal to or

smaller than some function G(), independent of Af, such that [7 G(A) d\ converges [2].
For Eq. (12), we write

| e % (cosh AAz F 4u~' sinh NAZ)'"** | < 9,
where
n = e 'e™(cosh® ANAzx + p7? sinh® AAz)"/*'.

Rearrangement of 5 leads to the form
—2NAz\ 2 1/ NAz) tAu/2
n=ert 'e“e““{[(u_——;———) (1 + p? tanh® )\Ax)] } .

By letting ¢(u) stand for one-half the natural logarithm of the maximum value of
the expression appearing between braces, as a function of u, we then have

| e % (cosh ANAz F 4u~" sinh AAz)"** | < e M e™™ = G(N).
Then, [ G(\) d\ will remain bounded if
- +z+utl+¢) <0,

or
¢ >+ ut(l + ¢). (16)
The function ¢(u) is plotted in Fig. 2. Similar treatment of Eq. (13) yields
¢ <z —ptl+9). 17
For Eq. (14), by observing that
| cos NAT == p™'sin NAz |2 = {] cos NAz £ p”' sin NAz |47}
1.25 \
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F1c. 2. Variation of ¢ as a function of the mesh ratio, u
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and that the maximum value of the expression between brackets is ¢'/*, we can write
| €% (cos NAz = p' sin AAZ)* | < e = GO,
and [ G(\) d\ will remain bounded if

'+ t<0,
or
¢ < —t. (18)
Similarly, from (15) we obtain
&>t (19)

Inequalities (16) through (19) give, independently, sufficient conditions under which a
solution to Eq. (3) can be found, given initial conditions of the form W(z, 0) = 1/(z — ¢).
They define a rectangle in the ({’, {’’) plane, for a given (z, £), outside of which (¢’ )
must lie if the solution e,[1/(x — {)] is to converge.

Next, these conditions are generalized to the whole class of analytic functions by the
use of the Cauchy integral formula. If f is analytic in and on a contour C, including a
portion of the real axis, then for any point z on the real axis inside C, we have

— 1)

Furthermore, since e, is a linear operator and linear operations can be performed under
the integral sign, we have

ald) = 57 [ 1Qault/@ = D) dr. (20)

If f(z) represents the value of an analytic function along the initial boundary line ¢ = 0,
o, (f) will represent the solution of Eq. (3) at any (z, t) with those initial values. However,
the right hand side of Eq. (20) imposes two conditions: (1) f(¢) must be analytic in
and on C, and (2) «,[1/(z — {)] must converge uniformly with respect to At on C. These
two requirements are met if the points (z; , t;) corresponding to the singularities (x; + 4t;)
of f fall outside the rectangle defined by inequalities (16) through (19). If a singularity
of f lies at (x, + 4%,), we can rewrite inequalities (16) through (19) as follows:

%>x+Mﬂ+@} @)
2 <z — pi(l + @)
b < —'t}. 22)
L>t

Inequalities (21) and (22) define two regions in which «,(f) converges. The superposition
of these two regions gives, then, the region in the real (z, ¢) plane in which a solution
to Eq. (3), subject to initial values f, will be obtainable (Fig. 3).

We can then state: Let f(z) be the value of an analytic function at the line ¢t = 0
in the (z, ) plane. A sufficient condition for obtaining a solution to Laplace’s equation,
subject to the initial values given by f(z), by the method of finite differences, is that we
do not operate inside the “shadows” of a singularity (x, + it,) of f. These “shadows”
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Fia. 3. “Shadows” of a singularity at (z1 + 24). In the region exterior to the shadows it is proven that
convergence is obtained.

are defined by the inequalities

r, —x
> i T e
[e]>]t]
where
u = Ax/At

and ¢ is given by Fig. 2.

b) Conditions for Stability. In improper problems like the one under consideration,
one can, in general, expect instability, i.e., lack of continuous dependence of the solution
on the initial data. However, F. John [3] shows that we can expect Hélder continuity
of the solution on intial values for a more general elliptic Cauchy problem, with suitable
restrictions, provided that the initial values are analytic. Since our problem falls within
those restrictions, we are assured of the stability of the solution found in the regions
of convergence indicated above, assuming that our initial values are analytic.

In practice, however, as is the case in the use of digital computers, we are limited
in the representation of initial values to a certain number of digits. This round-off error
destroys analyticity and, in general, the inherent instability of improper problems
prevents us from finding a solution. In spite of this fact, a study of error growth leads
to establishing a relationship between mesh size, number of digits used in the computa-
tion, and error growth which allows us to find a stable, convergent solution to the problem
under discussion.

Consider Laplace’s equation, V,, + V,, = 0, broken down into two first-order dif-
ferential equations:

W =0 (23)
uz = - vt y

where v = V. and v = V, . To solve this system of equations using the triangular mesh
given by Fig. 1, we form the difference equations

us — (U, + u,)/2 _ VW (24)

At 24z
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Vg — (1)1 +v2)/2 — u2 - ul'

At 2Ax (25)
From known values of v, for example, we can determine V by the equation
Vs — (Vl + V,)/2 _ U + (23 (26)

At 2

Because of linearity, we can use Eqgs. (24) through (26) to determine the rate of growth
of round-off errors. Let %, v, and V stand for these errors and assume solutions to the
difference equations of the form

u = Aeat+iﬁz; v = Beabl--‘ﬂz; V — Ceali--‘ﬂt. (27)

By placing these solutions into (24) through (26), and reducing, we obtain the following
set of equations:

e — cos fAr  —isin BAx 0 A
7 sin BAz e**' — cos BAx 0 B| = 0.
0 — At cos Az €™ — cos BAz) | C

By setting the determinant of the matrix equal to zero, we obtain
(e**' — cos BAz)® — sin® AT = 0. (28)

It is to be noted that the presence of Eq. (26) has no effect on the condition given by
Eq. (28). This is to be expected, since Eq. (26) has a completely stable solution. By
reducing Eq. (28), we obtain

e*® = /1 =+ sin 28Az. (29)

This equation relates the constant «, controlling the growth of errors in the t-direction,
with 8 = 2x/A\, where A is the wavelength of the particular component of the error
solution under analysis.

To find the component with largest contribution to error growth, we maximize Eq.
(29) by requiring that 28 Ax = (2n + 1)7x/2, or

8Ax

N r 1

‘The only value of A integral in Az is given A = 8 Az, corresponding to n = 0. The asso-
ciated value of « is given by

_ In2
24t

a

(30)

The magnitude of the A\ = 8 Az component of the errors introduced at the base line
‘will be of the order of the least significant digit used to represent the initial values and
perform the computations.

This, together with Eq. (30), gives a practical rule for determining mesh size and
number of digits necessary for the computation in order to obtain a prescribed relative
-error at a certain value of ¢. For a mesh system different from the one of Fig. 1, an analysis
parallel to the present one can be carried out.
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Fig. 4. Average relative error as a function of ¢ for p = 1.

3. Numerical results of a particular problem. The problem of solving Laplace’s
equation in two dimensions, subject to initial values

V(z,0) = In(1 4+ 2); V.(z, 0) = 0; 0<z<1,

was undertaken. We solve the pair of first order equations (23) with the equivalent
initial conditions

! 1
u(z, 0) = T3’ v(z,0) = 0; 0<z<1 31
Letu + @ = (1 + 2 — 4t)™"; we then have
_ 1+= ¢
S UrorEer 0 (82)

i

Clearly, Egs. (32) reduce to the initial values given by Eqgs. (31). Furthermore, since
v = V,, we can integrate and find an exact solution to Laplace’s equation for purposes
of comparison with the difference solution. We obtain

V==3ih[d+ 2+ &]. (33)
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F1c. 5. Average relative error as a function of ¢ for u = 1/3; a pole in the initial values lies at z +
it = —1 and the base of the triangle of the finite difference mesh system lies between 0 2 =z < 1.

By using the triangular mesh of Fig. 1 and the difference equations (24) through (26),
values of V' were computed on a Burroughs 220 computer. The results were compared
with those of the exact solution given by Eq. (33), and the average relative errors for
each row of the triangular region were obtained. Figure 4 contains some representative
results obtained by reducing Az = At from .125 to .003125, and using 8 or 17 significant
figures (single or double precision, respectively) for the difference solutions. It can be
observed that a reduction in mesh size results in a reduction of the errors obtained, or
the solution to the difference system converges to the solution of the differential equation,
as long as At in Eq. (30) is large enough to keep the exponentially growing error insignifi-
cant with respect to the normal truncation error. When Af is made small enough, this
condition is violated, and the exponential error growth represented by the straight lines
in Fig. 4 makes its appearance. When single precision computations did not allow further
reduction of the mesh size, a change to double precision enabled us to carry out such a
reduction until the exponential error growth appeared again. In the straight line regions
of Fig. 4, relative errors can be represented by

V = Ce™'. (34)
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The values of a predicted by Eq. (30), indicated in the figure, correspond to the ex-
ponential growth observed in Fig. 4 almost exactly. The coefficient C' obtained in the
computations is of the order of 107*° for single precision and 10™*° for double precision.
It is observed that these coefficients are much smaller than one unit in the least significant
digit used in the computation. Any round-off error in the computation is due mainly to
the Fourier term with 8 = /4 Az. By assuming random errors on the base line, one
would expect this component, and therefore, C, above, to have an initial amplitude far
less than the estimate of one unit in the least significant digit. Clearly, this estimate is
quite conservative. However, due to the large value of « in the exponential, it is possible
to determine when the exponential error growth will set in with reasonable accuracy.

Although the conditions for convergence given in Section 2a, are only sufficient, it
appears interesting to observe what happens numerically when they are violated. For
this purpose, a solution to the last problem was repeated with a mesh such that At = 3 Az,
in two regions:

0<2z<1 and —-.95 <2z <0.05

100
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F1a. 6. Average relative error as a function of ¢ for 4 = 1/3. A pole in the initial values lies at 2z 4
it = —1 and the base of the triangle of the finite difference mesh lies between —.95 2 = 2 .05.
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The first region was used as a control, since convergence was to be expected in it.
In the second region, however, we were attempting to carry the difference solution into
the “‘shadow” of the singularity at (z, {) = (—1, 0). The results show that, while for
0 < z < 1 convergence is obtained as in the case of Az = Af (see Fig. 5) no convergence
is obtained in the second case (Fig. 6). Moreover, the ill behavior of the results is not
affected by the number of digits used in the computation. These results are a good con-
firmation of the theory developed above.

4. Three-dimensional problem in cylindrical coordinates. Results of computation
indicate very clearly that convergence and stability in the solution of Laplace’s equation
as an initial value problem in other mesh or coordinate systems behave very much as
in the case studied above. Of particular importance is the solution of the three-dimen-
sional, axially symmetric system of Laplace’s equations in curvilinear coordinates:

Ve + V., + T v, + =0, r.+r.,=0, (35)

with analytic initial values given along an arc (See Fig. 7).

u

z
F16. 7. Boundary curve on which initial values are given for the solution of Laplace’s equation in an
axially symmetric system

The difference equations used for this problem as obtained from Eq. (35) are:

[V + Au,s) — 2V(u,s) + Vu — Au, s)]

(Au)2
(A )2 [Vu,s + As) — 2V(u, s) + Vu, s — As)]
1 [r(u,s + As) — r(u, s — As):”:V(u, s+ As) — V(u,s — As)]
r(u, s) 2As 2As
1 ru + Au,s) —ru — Au,8) || Vu+ Au,s) — Viu — Au,8) | _
r(u, ) l: 28u :“: 2Au :| = 0. (36)
r(u + Au, s) — 2r(u, s) + r(u — Au, s) r(u s+ As) — 2r(u, s) + r(u, s — As) -0
(Aw)® (4s)* '

The computations were carried out in double precision on a Burroughs 220 computer
and the results obtained for decreasing mesh size were compared to results obtained
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for the same problem by the method of analytic continuation [4]. Steady convergence
toward the known solution was obtained, until the point was reached in which the

mesh size was small enough to cause an exponential growth of errors, as expected.
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