
199

THE MATHEMATICAL THEORY OF A CLASS OF SURFACE WAVE
ANTENNAS*

BY

JULIUS KANE
University of Rhode Island

In this paper we investigate a three part boundary value problem which is used as
a mathematical model of a class of surface wave radiators. A feature of the analysis is
that various items of physical interest, such as gain and radiation resistance, can be
displayed as elementary expressions which are in accord with experimental data.

1. Introduction. If a time factor e-'"1 is suppressed, then Maxwell's equations in
free space assume the form

curl E = +t'co/u0H, curl H = — fcoe0E. (1)

These equations admit the existence of electro agnetic fields known as surface waves.
These waves are so-called because they propa ate tangentially to specially-treated
surfaces and decay along any outward normal to that surface. In two dimensions, if
Hx = Hv = 0, and Hz = u(x, y), the TM polarization, then the vector equations (1)
are equivalent to the reduced scalar wave equation

(V2 + k2)u(x, y) = 0, k2 = cA0mo , (2)

and the statements

Eb = _A^ e = ±1 ^ E = o. (3)
toj«0 oy t<j}e0 ox

The wave equation (2) admits the field

u = exp [i{k2 + \2)1/2x — \y] (4)

where X is an arbitrary parameter, as an acceptable solution: if X has a negligible imagi-
nary part, then this wave function is the simplest example of a surface wave. In this case,
it propagates in the positive ^-direction, and is exponentially attenuated in the upper
half space y > 0. In engineering contexts, X is related to the impedance z = R — iX of
the surface, here the x, z-plane, by the relation

X = ikZ = ik(R - iX). (5)
It is not difficult to prepare a reactive surface, that is, one for which R is negligible in
comparison to X. For these structures, X ~ kX, and can be considered as a positive
real constant; this restriction will be assumed in the subsequent analysis. The complex
nature of the supporting surface, the x, z-plane, can then be mathematically abstracted
as an impedance relation, or as a mixed boundary condition of the form

J* + kXu = 0, (6)dy
as has been done by many authors [1] through [5].
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It is clear by an inspection of (4), that the larger X = kX is, the more tightly bound
is the surface wave (4) to the x, z-plane. Furthermore, it has been shown by Cullen [6],
Brick [7], Friedman [3], Kane [4], et. al., that the efficiency of surface wave excitation
by a fixed source varies directly with increasing X. On the other hand, truncated reactive
surfaces are useful in antenna applications: The treated surface serves as a transmission
line which delivers the surface wave to the termination where part of the energy of the
surface wave is radiated. A figure of merit in this application is gain, and it has been
theoretically shown by Kay [2] that this parameter is G„ = 4/X for a surface wave
incident from infinity upon a termination consisting of a conducting ground plane.
Since practical surface wave antennas include excitation, transmission, and radiation
regions, their design is restricted by these conflicting demands upon X. Furthermore,
limited theoretical knowledge has been afforded the antenna engineer since realistic
mathematical models pose intractable boundary value problems. In this report we
obtain an explicit, if approximate, solution of a three-part boundary value problem
motivated by questions of antenna design. With this information we are then able to
discuss the gain of a hypothetical antenna which includes surface-wave excitation and
radiation regions. We find, for example, that although this gain still varies inversely with
the reactance, it approaches a finite limit as the reactance X vanishes.

2. Formulation. We seek a solution of the reduced wave equation (see Fig. 1)

V2u + k2u = -4irS(x)S(y)
u = H,

MAGNETIC LINE
SOURCE

REACTIVE SURFACE

+ kXu = 0dy

- M

PERFECT CONDUCTOR PERFECT CONDUCTOR
#Uo = 0dy dy

Fig. 1. The geometry of our problem: A reactive surface which extends from x = —m to a; = I is excited
at the origin by a magnetic line dipole source. If we restrict our region of interest to the upper half
space, then the boundary conditions on the x-axis for x > I, x < —m are appropriate for perfect con-
ductors. Alternatively, by analytic continuation of u, these conditions can be thought of as implying
that the x-axis is a plane of symmetry in the whole space. (The boundary condition on the lower portion
of the reactive section would be du/dy — kXu = 0 owing to the change in sign in the normal derivative
after reflection). Furthermore, in the symmetric problem I = m, the positive y-axis can be thought
of as a metallic sheet since du/dx = 0 along that ray; this situation would correspond to a surface wave

antenna placed in a corner reflector.

(V2 + Jc2)u(x, y) = —4TrS(x)8(y), y > 0 (6)

which satisfies the three-part boundary conditions
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f|=0 y = 0, x> I, (7a)

^ + kXu = 0 y = 0, -m < x < I, (7b)
oy

fr = 0 y = 0, x > I, (7c)ay

and behaves like an outgoing wave at infinity. If I = m, then the problem posed by
equations (6) and (7) is suggestive of the cross section of a cylindrical beacon antenna
of a type considered by Plummer [8]: A line source at the vertex excites surface waves
on the reactive portion modeled by the boundary condition (7a); the treated surface
terminates at x — —m, and x = I into perfect conductors (u„ = 0) which extend to
x — —00, and x = + <» respectively. Alternatively, the boundary conditions on the
metallic portions can be interpreted as implying symmetry about the x, z-plane.

Before constructing a formal mathematical solution it is convenient to consider the
operation of the antenna in the time-domain, and suppose the source has just been turned
on. At first the field that surrounds the source would be the same as that on an infinite
reactive plane since the field would not have reached either termination. This time-
varying field would be a Fourier transform of a known [1] time-harmonic field which
consists of two parts: a cylindrical radiated field

Co = iir[Ho\kr) - kXe~kXy f ehXtH£\k[x2 + f}U2) dt], (8)

and a surface wave field

SW = exp (ikM | z | - kXy), M = (1 + X2)172 (9)

It is especially worth noting that the pattern function p(d) of any cylindrical field

Vie) + 0[(kr)-3/2]

must have a null in the direction of the reactive surface* (the Karp-Karal lemma).
For our geometry this implies that the pattern function p0(6) of the cylindrical field (8)
must satisfy

Po(0) = Pu(tt) = 0, (10)

so that the field which arrives at say the right termination x — I is proportional to

exp (iMkl - kXy) + 0[(fcZ)~3/2], (11)

if kl 1. That is, since surface wave antennas are at least several wavelengths long, the
field that arrives at the termination is dominated by the surface wave field. If we can
neglect terms of order 0[(kl)~3/2] at the discontinuity, then the situation in these regions
has been discussed in [2]. The diffraction pattern is known: a reflected surface wave is

*Essentially, the Karp-Karal lemma is an observation that any wave function u whose leading
term is asymptotically g(9)/(kr)112 must have g(0) = 0 if u is to satisfy a boundary condition of the
form du/de + Xru = 0 along the ray 0 = 0.
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generated and a new cylindrical field appears at the termination. By the Karp-Karal
lemma, this scattered cylindrical field will have a null in the direction of the reactive
surface and a fortiori the source. Clearly the situation is the same at the other termina-
ion, and, consequently, the fields that are returned to the source are the reflected surface
waves plus portions of the cylindrical field which behave like terms of order 0[(kl)~3/2].
These reflected surface waves then meet a new discontinuity at the source and again
further diffracted fields are excited. In the limit, there are multiply reflected surface
waves between the source and terminations, plus cylindrical fields with phase centers
at the origin and either termination. By the Karp-Karal lemma these cylindrical fields
have pattern functions which must vanish on the reactive surface. Hence, apart from
terms of order 0[(kiy3/2], the interaction between the source field and terminal fields arises
from, the multiply reflected surface waves. One principal result is to show that this coupling
can be calculated in an elementary and explicit manner.

3. Solution. We shall obtain our principal result as a linear combination of the
solutions to simpler problems, and determining the required coefficients. For this purpose,
it is convenient to work backwards from the discontinuity: At the right-hand termination
we choose the field to be of the form

J, {exp [ikM(x -I)- kXy] + R(X) exp [~ikM(x -I)- kXy] + C,(r, , B, ; X)J, (12)
where M = (1 + X2)1/2, R(X) = pe'* is the reflection coefficient for a unit surface
wave incident upon a conducting ground plane, and Ci(rt , 6t ; X) is the diffracted
cylindrical field excited by the surface wave, which has its phase center at the discon-
tinuity in reactance x — I, y = 0. That is, we include within (12), an incident and re-
flected surface wave, plus a cylindrical radiated field with phase center at the discon-
tinuity (I, 0). An analysis of these fields which exhibits the behavior of R(X) and
Ci(ri , $i ; X) has been given by Kay [2], (see also Appendices A, B). Since the wave
equation (6) is homogeneous in a vicinity of the termination at (Z, 0), the wave function
(12) in square brackets can be multiplied by an as yet unknown constant J, , and remain
a wave function. Likewise, at the left-hand termination we introduce

exp \—ikM(x + m) — kXy]
+ R(X) exp [ikM(x + m) - kXy] + , 0_m ; X)}, (13)

which includes another unknown factor J-m . In the vicinity of the source, we superpose
the cylindrical portion of Karp and Karal's solution [1]

C0(r, 6, X) = i-^H^{kr) - kXe~lXv J" elxtH«\k [x2 + y2]l/2)dt^ (14)

of the inhomogeneous wave equation, and the solutions of the homogeneous wave equa-
tion (12) and (13). The field (14) has the required singularity at the origin, and is a
wave function everywhere in the upper-half plane, except along the line x = 0, where it is
continuous, but has a jump J0 in the normal derivative of magnitude

, _ dCo
0 dx

0 +

0-
-4tt kXe~kTv. (15)

Note that the ^-variation of the jump in (15) is proportional to the variation of a
surface wave. We exploit this fact by using the surface wave portions of (12) and (13) as
■"patch functions." That is, let the surface wave portions of (12) and (13) exist only for
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0 < x < I, and — m < x < 0 respectively. Then the total field described by (12), (13)
and (14) will be discontinuous across the line x = 0, and will have a discontinuity in the
normal derivative there, unless Jt and J_m are selected properly. Clearly J, and J-m
must be so chosen that the combination (12), (13) and (14) is continuous, and possesses
continuous first derivatives in any neighborhood of the y-axis. For continuity we need
choose

Ji(e~ikMl + ReikMl) - J.m(e~ikMm + Re''**") = 0, (16)

and for a continuous normal derivative we must have

M[Jl{e~ikMl - Re<iJ") - J-m(-e~ikMm + RertJf")] = 4rrX. (17)

We can solve (16) and (17) for J, and </_m
, 4nX(e~ikMm + Re'*""')

J' M- det ' ( }

, _ 4+ Re"*')
J-m M-det ' { '

det =

where
(e~ikMl + ~ReikMl) -(.e~ikMm + Re,tJ1/")

(e~ikMl - Re,tM') (e~ikMm - Re,iMm)

and then we can display our solution as

u(x, y) = C0(r, 6; X) + JtCify, , d, ; X) + «/_„C_m(r_m , 0_m ; X)

+ Ji{exp [ikM(x — I)] + R exp [—ikM(x — T)]}e~kXyU(x)U{x — I)

+ J_m{exp [—ikM(x + m)] + R exp [ik(x + m)]}e~kXvU(—x)U(x + m), (20)

where U (x) is the Heaviside unit function

lb for x < 0,
ll for x > 0.

U(x) =

4. Discussion of the solution. A. Introduction. To simpify the subsequent analysis
it is very convenient to discuss a symmetrical antenna, i.e., one for which I = m. With
this choice

T _ T 2iriX exp (iMkl) . .
— M[\ - R(X) exp (2iMkl)] ' [ '

and the field on the antenna is

u(x, 0) = iJ\Jl'!\kx) - kX J° ekXtIl2\k[x2 + t2]1'2) rf/]

+ J[Cl(l - x, x; X) + C-:(l + x, 0; X)]

+ J exp (—iMIcl)[exp (ikM | x |) + R(X) exp (2iMkl — ikM | x |)]. (22)
for y = 0, | x | < I. Although the literature [2] is explicit on such questions as the magni-
tude R(X) of the reflection coefficient and the magnitude p~i(0) of the pattern functions
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of the terminal radiation fields, there is no elementary expression which gives the phase
of these important quantities. This situation arises from the fact that these parameters
emerge as part of involved function-theoretic expressions required to solve a Wiener-
Hopf problem. Kay has been successful in showing that the magnitude of the required
parameters can be presented in an elementary form, but no similar result is available
for the -phase. In Appendix B we show how the required factorization can be performed
approximately, with a small error for | X \ < 1. The feature of this procedure is that it
yields an explicit elementary representation for the phase whose accuracy is as high as
the theory justifies. In particular, we find that the reflection coefficient can be written as

R{X) = pe-'* (23)

wherein

X2 , -i /sinh-1 X\ (24)
P ~ 1 + (1 + X2)1/2 + X2 ' * ~ 2 tan \ r J

Since the exact magnitude p is known, we introduce that expression in (24), and use the
approximate result only in the phase <£.

B. Maximizing the end-fire field. For an antenna which is symmetrical about the
?y-axis, maximizing the field in one end-fire direction achieves a similar result in the other
end-fire direction. Let us consider the radiation field towards the right: Both the source
pattern function po(0) and the left-hand pattern function p-i(0) have nulls in this di-
rection, and hence the only contribution to the combined pattern function P(6) for
Q = 0 arises from the right hand pattern function p, (0). This quantity varies directly as
the amplitude of the incident surface wave which is given by (21). The magnitude of
this expression will be a maximum when the electrical length MM of the antenna is
such that

1 - pe~%2iMkl = 1 - p (25)

or, by (24),

-0 + 2Mkl = -2 tan"1 jSinh^ + 2MM = n(2jr), n = 0, 1, 2, • • • . (26)

That is, for maximum field in the end-fire direction we should choose the electrical
length Mkl of the antenna to be

(Mkl)m„ = ut + tan"1 X\ (27)

Analogously, the minimum field arises when

/nri nir , , Jsinh-"1 Xl
(.MM)mia = — + tan j — > (28)

Most surface wave antennas operate with small reactances; for these cases

(M/cQmax ^ K7T, X « ], (29)

or the phase separation between the termination and source behaves like some multiple
of 7r for maximum gain.

Consider first the odd multiples of ir in equation (29). For antennas which are so
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adjusted, the end-fire field will be a maximum. However, just off the end-fire direction,
the source and other terminal field are no longer null, and hence interfere with the main
lobe. As a result, the combined half-power beam width of such an antenna will be less
than that of an isolated surface wave radiating at a discontinuity in reactance. This
point is in agreement with the rather general experimental observation that amplitude
patterns for antennas are about 20 per cent narrower than Kay's theoretical radiation
pattern for an ideal surface wave, incident from infinity, radiating at a discontinuity [10].
In Figure 2 we plot the phase separation between source and termination which maxi-
mizes the end-fire amplitude according to (27) for odd n.

1.0 2.
REACTANCE

Fig. 2. The optimum electrical lengths required to maximize the amplitude of the outward surface wave
as given by equation (27).

On the other hand, even multiples of t are also acceptable for (29). These values of
Mkl would yield the same end-fire amplitude, but the combined pattern would be broader
than the Kay pattern, since the fields now add. This adjustment is of less interest for
broader patterns are usually less desirable.

C. Definition of the gain. If a semi-infinite reactive surface is terminated by a
perfectly conducting half plane, then the end fire gain including mismatch losses of the
radiation field produced by an incident surface wave can be shown [2] to be

G„ = 4/X (30)
where X is the reactance of the surface. The expression (30) is a consequence of the
following definition of gain

_ power in the end-fire direction at a distance r from the discontinuity ,
total incident power/jrfcr

That is, G„ is taken to be the ratio of the end-fire power amplitude to the power ampli-
tude that would arise if the total energy in the incident field were to be distributed
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isotropically in the upper half space. The expression (30) would apply to our problem
only if all of the energy supplied by the radiating line source went into the surface wave
field. Since in addition there are finite cylindrical fields, we can multiply (30) by an
efficiency factor to get a definition of gain suitable for our purposes

^ _ power in outward SW field ^
total radiated power

We use the power in the outward surface wave field in (32) since G„ includes mismatch
losses.

D. Radiation Resistance. The formula (32) becomes quite tractable if we introduce
the notion of radiation resistance: If 3 is the strength of the line source, then the total
radiated power would be | & |2(R where (R is the radiation resistance of the combination.
Let & be the amplitude of the outward surface wave generated by a source of unit current,
then a current 3 will produce the outward surface wave

H'™ — dd exp (ikMx — kXy) (33)

on the right arm of the antenna. By Maxwell's equation (3b) the Poynting flux II,„
carried by this field is

r°° I 8GL I2 M
n,» = Jo KW(H7)* dy = 1 ' (34)

and then equation (32) becomes

= 2 | a |2 M
' coe0X(R ' (35)

which would be an explicit formula for the gain if the radiation resistance 01 were known.
Usually, complicated procedures are required to obtain the radiation resistance (R.
However, there is a very useful result originally due to Newstein and Lurye [10] and
proved independently by Karp [11] in a more comprehensive form. For our purposes
we shall state the result in form of the following lemma.

Lemma-. Let the magnetic field H„ in the region of a source at the origin have the
form

H> = [Ho\kr) + *(r, 0)]e-("' + S), Hx = Hy = 0, (36)

where ^(r, 0) is regular in a neighborhood of r — 0, and S is some arbitrary constant
phase factor. Then the power II radiated by the source is

n = — [1 + (Re*(0, 0)]. (37)
W€0

In other words, if the phase factor 8 has been so chosen that the field singularity is in the
imaginary part of the spatial field, then the power radiated depends upon the value of the
real part of the spatial field at the origin.

As an immediate consequence, since the radiation resistance (R is proportional to the
radiated power, we have

2f
(R = — [1 + (Re *(0,0)], (38)

we o
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where C is an unimportant dimensionality factor. We shall choose C to be unity; this
corresponds to a choice of units in which a magnetic line dipole source located on an
infinite metallic ground plane has its gain normalized to unity. If we neglect terms of
order (kx)~3/2, then it is an elementary calculation to determine the finite part ^(0, 0)
at the origin for our analysis. From equation (22) we obtain

rt, = Ail _ * _L 2Z fl + P exp \i{<j> + 2Mkl)i
' M M |_1 - P exp + 2Mkl)].O)60

(39)

The first two terms within the curly braces are the contributions of the free space and
diffracted cylindrical fields to the radiation resistance. The last term is that portion of
the resistance due to surface wave excitation on the antenna: It is very interesting to
note that this term has the same form as the input resistance of a transmission line
terminated by an impedance; the load in this case being the radiation and reflection of
the surface wave at the termination. Observe that for fixed X, the only variation in the
radiation resistance (R with changing length I arises from this last term through a factor
e%Mk, and that the radiation resistance (R goes through the following upper and lower
bounds

2 / X . 2X 1 + P\ ^ 2 / X . 2X 1 - P\ ....
o)€0 \ M M 1 — p)' min ax* V M M 1 + p)' (40)

as I varies. These expressions can be compared with the resistance

2 / X , 2X\
coe0 \ MM/ ( }

which arises if the arms of the antenna are infinite in extent, or so terminated that the
reflection coefficient p is null; note that (Rmin < (R„ < .

E. Gain Variations. The remaining element required to specify the gain is the
amplitude ft of the outward surface wave. From (22) this parameter is seen to be

_ J exp (- iMkl) _  2X  , .
ri M{1 — p exp [i(<t> + 2iMkl)]}' '

This term a, like (R, varies in magnitude through a factor e2lMkl as a function of I. Com-
paring (39) and (42) we find that the extremum values ®,nal and am„x arise simultaneously

min min

for the same values of I.
Since the gain G, depends upon | a |2/(R it can easily be shown that the maxima

and minima of G, too arise for these values of I. As a result, because | Ctmax |2/(Rmax >
I amin |2/(Rmin we obtain

(G)  ± <1 - ,)'\M - X + 2X(1 + t)/ll - ,)] • .

(Gi)min
4

(1 + p)'[M — X + 2X(\ — p)/( 1 + p)]
where p is given by (24). For small X it is clear that

(G i)mox (G;)min ~ 4 X«1

and for large X the reactive surface is ineffective in increasing the gain since
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(G()m« ~ (Gj)min ~ 2X(1   p^) ^»L

These last two relations also indicate that for extreme values of X, there is little varia-
tion between (G,)ma* and (G,)min ; for small X this situation is a consequence of the
reflection coefficient p being small, whereas for large X, the anticipated large excursions
of gain [based upon equation (42)] are damped by the wide variations in the radiation
resistance (R. In Fig. 3 we plot the possible limits of G, as a function of X. We observe

.3 .4 .6 .8 1.0 2. 3. 4. 6. 8. 10.
REACTANCE X -

Fig. 3. The gain variations 10 log (Gi)maI according to equation (43) plotted in decibels.
min

that there is no relative maximum for (G,)mai , and that it decreases monotonically for
increasing X. Furthermore, the gain is finite for X = 0, unlike Kay's gain G„ . However,
this result should not be interpreted as implying that surface wave antennas are gain-
limited: we have obtained a gain of 4 (or 6 db) as a limiting value only because the surface
wave excitation efficiency of our omnidirectional line source falls off as X with decreasing
reactance. There is no reason why other directive feeds could not be more efficient as
surface wave exciters [4], and produce gains as high as desired (however, there is another
limitation which will be discussed in the next section).

In Fig. 4 we plot the variations in the normalized radiation resistance (R as a function
of X. It is these excursions in (R which keep the gain variations small. This explains why
the surface wave antenna is not a resonant device. Although maximum gain does depend
upon the electrical length Mkl, we have seen that this adjustment is not critical, indeed
from Fig. 3 the maximum variation in gain is seen to be less than 1 db; this agrees with
the experimental conclusion that the observed gain variations are also less than 1 db.
[9, p. 16-13],

F. Surface wave purity. Our analysis in the preceding sections has implied that
the gain of a surface wave antenna depends only upon its electrical length Mkl, (mod 2ir)
and not its physical length I. In actual practice, it is known that if a surface wave antenna
is to operate, then it must exceed some minimum length. This minimum length is that
distance from the source at which the surface wave has peeled itself off from the
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.6 .8 10 2 3 4 e a 10
REACTANCE X -

Fig. 4. The normalized radiation resistance as given by equation (40).

cylindrical wave. We have tacitly assumed that we could ignore the cylindrical field on
the antenna's surface by the Ivarp-Karal lemma. However, terms of order 0[(kx)~3/2]
can not be neglected at moderate distances from the source. It is worthwhile to calculate
that distance from the excitation at which the surface wave predominates. For this
purpose let us ignore the effects of the termination and consider the purity of the surface
wave field as a function of distance along the reactive surface measured from the mag-
netic line dipole source at the origin. A purity factor P(x, X) can be defined as

P(x, X) = [| IIr |/| H?' |L_o (44)
which is a function of the distance x from the source, and the reactance X of the surface.
If the reactive surface is unbounded, then from Eq. (22), with R = 0, and I = we obtain

HVl U„ = iri[H^\kx) - I], (45)
where

kX f etxII»\k[x + f2],/2) tff, (46)

TjSW I   2iriX i M\hx\ (AH\
z |j/=0 Q } V*'/

so that

P ~ (1 + X2)1/2 2\H^\kx) - I | (48)

In Appendix C we obtain an estimate for I, if X ^ 0, of the form

I « H{^{kx)[ 1 + 2i/(X2kx)] (49)

The leading term of I cancels the source field on the x-axis (as it should by the Karp-
Karal lemma), and thus
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2 X3kx
(1 + X2)1/2 | H^Xkx) | ' (5Uj

If we exclude the immediate neighborhood of the source we can replace | H'a" (kx) | by
(2/Trkx)1/2 whence

p ~ {TTx*Yx3(kx)3/2- (51)

For a given purity factor, say P = P0, this equation can be used to estimate the required
length of antenna kx0 , and reactance X to achieve P0

■ il- (i + x2\u*
1 Z2 \ 2 7T / '

kxo j^-2 1 o_ ) • (52)

This formula clearly indicates why high gain—low reactance antennas must be long—
they need the length for the surface wave to emerge from the source field.

Zucker has given an empirical rule of the thumb [9; eq. 16-19] for a surface wave to
establish itself as

kxz0[( 1 + X2)1/2 - 1] = tt/3, (53)

which in essence states that xz0 is that distance from the feed at which the space wave,
propagating at the velocity of light, leads the surface wave by 60°. If we expand the
radical in (53) that expression takes the form

kxz0 « (2ir/3)X~2 (54)

and for small X this has the same variation in X as (52). Furthermore, if we use x\ in
equation (51) of our analysis we find that at this distance the theoretical surface wave
amplitude dominates the space wave amplitude by a factor of 7:1, which certainly
implies that we can neglect the power in the space wave at this point, hence, the theory
confirms the empirical rule.

5. Conclusions. In this report we have investigated a mathematical model of a class
of surface wave antennas. A feature of the analysis has been to show that various items of
physical interest, such as gain and radiation resistance, can be displayed as elementary
mathematical expressions. This has permitted a theoretical interpretation of various
facets of operation which while well known from practice, have not been theoretically
explained. The results include an estimate of the gain obtainable for a given reactance
and antenna length, a demonstration that the surface wave antenna is a non-resonant
device since less than 1 db gain can be lost to resonant effects, and a calculation of the
purity of the surface wave field as it emerges from the source field. The mathematical
inquiry has served to validate a variety of empirical relationships, and illuminate the
operating mechanisms of surface wave antennas.

6. Acknowledgment. It is a pleasure for the author to acknowledge the many
stimulating discussions with Mr. F. J. Zucker of the Air Force Cambridge Research
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Appendix A

The junction Ct (r, , 9t ; X)
From equation (31) of [2] in our notation, C( is given as

r (r ft ■ Y\ =  X<r+(kM) exp [i(kr, - tt/4)]
' ' ' ' (cos et - M)<r*(k cos 6,)' (2irkr^2
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which has its phase center, rt — 0, at the discontinuity in reactance x — I, y = 0; and 6t
is measured counterclockwise from the positive x-axis. The factors o-+(fcM) and
a+(k cos 6i) are given explicitly, if approximately, in Appendix B.

Appendix B

The reflection coefficient R(X) = pe1* which is used in the text is defined in terms of
the decomposition factor <r+ (/) according to the relation

R(X) = pe<* = X2[<r+{kM)V/[2{\ + X2)] (Bl)

In turn, <r+ (v) satisfies the functional equation

ct\v)<t+{-v) = 1 - JcXi(k2 - v2yU2 (B2)

where a+(y) is analytic in the upper p-plane Im v > 0 including the real f-axis
for Re v > — k, and 0(1) as | v \ —»• <». Assume that

cr+(y) = cr+(v, kX) (B3)

is also analytic as a function of the parameter kX, and expand a+ (v, kX) about kX = 0.

<7>, kX) = 0) + kX[a\v, 0)]' + 0[(A;Z)2], (B4)

where the prime denotes differentiation with respect to kX. If we set kX — 0 in (B4),
we obtain

<r+(y, 0)o-+(—v, 0) = 1 implies <r+(v, 0) = 1 (B5)

or the leading term in the expansion is unity. To obtain the perturbation factor, we
differentiate the defining relationship (B2) with respect to kX and set kX equal to zero

k>, 0)]' + [<r+(-,, 0)]' = -i(k2 - ,V1/2. (B6)

Using Cauchy's integral formula, we can decompose (fc2 — v2)'W2 as

(fc2 - „2)-"2 = [f(„) + f(-„)]/x, (B7)
where

/+W = (fc2 - v2y1/2 In {[zV + (k2 - v2)U2]/ik) (B8)

It is a simple matter to show that f+(v) is regular in the upper v-plane Im v > 0, and a
region which includes the real axis for Re i- > —fc. It then follows that

[*>, 0)]' + [<7+(-„, 0)]' = - [/» + /+(-f)]/x, (B9)

and by comparing common regions of analyticity on either side of (B9) we conclude that

[<r+(v, 0)]' = —if{y)/ir. (B10)
Thus, if we substitute (B5) and (B10) into (B4) we have

<r>, kX) = aA(v, kX) + 0[(kXf], (Bll)
where the approximate Wiener-Hopf factor cr+A {v, IcX) is

a+A(y, kX) = 1 + (fcZ/7r)(fc2 - x2)"1/2 In {[iv + (fc2 - f2)1/2]A'fc| (B12)

provided that the proper branches of the radical and logarithm are chosen.
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Verfication. One can readily check that <r*A (v, kX) shares the same regions of regu-
larity as <j+(v, kX), and has a similar growth as | v | —> . A direct multiplication of the
factors

[<r+A(v, kX)][<t1(-v, kX)] = 1 - kXi(k2 - V2YU2 + OPZ2)] (B13)
checks the accuracy of the approximation; furthermore,

<71(0, kX) = [1 + (X/2)2] exp [~i tan"1 (X/2)], (B14)

which compares well to the known value

<t+(0, kX) = (1 + X2)1/2 exp [-(*/2) tan"1 X]. (B15)

Note: This approximate decomposition depends in large part upon the fact that the
coefficient i(k2 — v2)~1/2 of the perturbation factor kX decays more rapidly than the
leading term (unity) for | y | —> <=°. If the situation were otherwise, then it can be shown
112] that <r+(v, kX) is not an analytic function of kX about kX = 0, and the approximation
schemes for such cases are a good deal more complex.

Appendix C
The integral

/ = kX J° ehXiH^(k[x2 + f]l/2) df (CI)

can be thought of as a distribution of sources along the negative f-axis with a weight
factor ekX{. Uniformly, for all f, and x greater than unity we can argue that

Ha\kr) (x/ry'V^-'H^ikx) (C2)
where r = (x2 + f2)1/2, or more explicitly

so that I becomes

HoV(kr) & x1/2e~'kxHo1)(kx) eXp(^ (^ ^17^ (C3)

I kXx1"e-""H?'(kx)J (C4)

negative £-axis

Fig. 5.



1963] SURFACE WAVE ANTENNAS 213

where

J r° exp f/,-Xr + ik(x2 + f2)"2] rff ,p_.
j.„ (x2 + f2)1/4 (°5)

Along the contour S which is defined as the locus of points in the complex f-plane for which

dm [kXf + ik(x2 + f2)1/2j = constant = kx (C6)

the integrand of J decays exponentially. We can deform our path of integration from
the negative real axis to that portion of S which lies in the third quadrant because the
only singularities f = ±ix of the integrand lie on the imaginary axes, and the integrand
decays exponentially within the shaded region. Hence

J = [ ens)g(f) df, (C7)
J S'S

(thi rd quadrant)

where

and for reference

Let s = /(f) so that

/(f) = kXi + ik(x2 + f2)1/2,

1
g(t) = (z2 + fT

/'(f) = kx + ikttx2 + fTI/2,

/"(f) = ik{x2 + f2r1/2 - ikf(x2 + f2r3/2.

(C8)

(C9>

J /'(f) ' ( )

Fig. 6. The contour S in the third quadrant which is the locus of points in the f-plane for which
Im \kX(; + t'Vx» + f2] = k. In the illustration we have assumed that x < X.
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and a suitable approximation to J is obtained by expanding the algebraic portion of the
integrand as a power series in s about s = 0 and integrating term by term. Note that
it is convenient to retain g and /' as functions of f. The two leading terms of such an
expansion would be

j^\j] xr-,da+\fj-u\] xU Jr-o •/-»+.** L as af \J / Jf_o J-«+ikX

= [f]f-o X ~ [f (f ~ (fr). X e,te. (Cll)
f-0

Since

we obtain

9(0) = , 9'(0) = 0, /'(0) = kX, /"(0) = , (C12)

J ~ \_kXxl'~2 + (kXf f/2~]e'kX (C13)

and consequently the result

7 + Tk*.
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