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1. Introduction. We are concerned in what follows with the problem of toroidal
shells of circular cross section which are acted upon by uniform normal pressure. It is
well known that a solution of this problem by means of linear membrane theory, while
leading to reasonable stress distributions, is associated with certain important incon-
sistencies insofar as the deformations of the shell are concerned [1]. It is also well known
that a removal of these inconsistencies should be possible by an application of the linear
theory of bending of toroidal shells [1]. However, for very thin shells it is more reasonable
to expect that a removal of the deformational inconsistencies of linear membrane theory
may be accomplished without considering wall bending action; that is, through the step
from linear membrane theory to non-linear membrane theory. The first statement of
this observation as well as an analysis of the non-linear membrane problem has been
given by P. Jordan [2],

Our present object is a more general approach to the problem through a system of
differential equations which contain both the equations of the linear bending theory and
of the non-linear membrane theory as limiting cases, and which remains applicable in
the transition region when both linear bending and non-linear membrane action have to
be considered simultaneously. Specifically, we wish to determine the ranges of values of
suitable non-dimensional parameters for which linear bending theory and non-linear
membrane theory are appropriate, and also the ranges of these parameters for which
the problem belongs to the transition region between the two limiting forms of the
theory.

Derivation of the differential equations which govern the problem in all three ranges
is accomplished through appropriate specialization of a general system of differential
equations for finite symmetrical deflections of shells of revolution which has previously
been given by the author [3].

2. Differential equations for finite symmetrical deflections of shells of revolution.
Defining stress resultants, stress couples, and displacements in accordance with Fig. 1
and limiting attention to small strains, isotropy, and to vanishing transverse shear and
normal strain, we have the following system of equilibrium equations and stress dis-
placement relations for elements of the shell with middle surface equation r = r(£),
2 = Z(£),
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M

Fig. 1.

[r(./V£sin $ + Q cos $)]' + rapv = 0, (1)

[r(N( cos $ — Q sin $)]' — aNe + rapH = 0, (2)

\rM(]' — aMe cos $ — raQ = 0, (3)

u' — a(cos — cos <£) Nt — vNe /a\€£ = = C ' (4)

e9 = u/r = (Ns - vNe)/C, (5)

= D(«f + «.) = -d(^^ + (6)\ a r /

M, _ Z>(«, + «,) _ -(7)

In these equations, primes indicate differentiation with respect to £, a = (r'T + («')*,
the stiffness factors C and D are of the form C = Eh, D = Eh3/12(1 — v2), and k£ ,
k$ are the curvatures.

To reduce the system (1) to (7) to a system of two simultaneous second order equa-
tions for the angular displacement variable $ and for a stress function , we write

r(N( sin $ + Q cos $) = \fv , (8)

r(Nt cos 3> — Q sin $) = , (9)

where, in view of Eq. (1)

= — f rapv d£. (10)
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and then have as expressions for stress resultants

rN( = \fv sin $ + cos $, (11)

rQ = ^v cos $ — ̂  sin <$, (12)

aNe = + arpH • (13)

The first of the two simultaneous equations for $ and follows by introducing
Eqs. (6), (7) and (12) into the moment equilibrium equation (3), in the form

($ - <t>)" + ($ - 0)' + ^-(cos $ - cos 0)

— (^2 cos $ — v ̂ ^(sin $ — sin <£) = ^(^„sin $ — cos 3>). (I)

The second of the two simultaneous equations follows by introducing the stress
displacement relations (4) and (5), with Ni and Ne from (11) and (13), into a compati-
bility equation of the form

(ree)' — ae( cos $ = a(cos <f> — cos (/>). (14)

The resulting differential equation is

T,, , (r/Ca)' T , , T fa2 ^ aC'\T
" + (r/cSj " " ~v "sin ~ v?cos ~" rfTr-B cos

= (cos $ — cos <f>) + {^2 cos — v sin$ + v sin $)'

— ^2a cos <t> + va cos $ — ra ~ arp'H. (II)

Having expressions for stress resultants, stress couples and radial displacement
component u in terms of $ and it remains to express the axial displacement com-
ponent w in analogous fashion. This is done by means of the relation

w' = (1 + e()a sin $ — a sin <t>. (15)

Equations (1) to (15), together with (I) and (II) coincide, except for notation, with
the contents of Sects. 2 and 3 of [3].

3. Differential equations for small finite deflections. We now write

$ = d> + /J (16)
and retain the leading terms in expansions in powers of /3, as follows

M( = -d(P- + f—), Me = -D(^ + v^). (17)
\a ra/ \ra a /

rN£ = sin </> + >?/, cos <t> + (Sty cos <f> — sin </>)/?, (18)

rQ = ^v cos <f> — sin 0 — (^>y sin <j> + cos </>)f3. (19)

Equation (13) for Ns remains as before, as does Eq. (5) for u. Equation (15) for w becomes

w' = e(a sin (j) + Pa cos <j> — 5a/32 sin <£, (20)
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and the two differential equations (I) and (II) are reduced to

(rW _ _ £W)
P + rD/a P \r (rD/a) J

2

= sin </> — >fv cos </> + (>£// cos 0 + sin 0)£], (HI)rJJ

H ^ r/Ca " W ^ (r/Ca) J "

aC , . .s , (ol cos cj> aC'\ T . a , . ..    (j3 sm 0 + |/3 cos 4>) + I 2 »> "tt sin <j> + v - 0®v sm 0)r \ r r C / r

— ((2 + i>)a2 cos 0 — ra (IV)

Equations (III) and (IV) are equivalent to Eq. (Ill) and (IV) in [3], except that
here we have omitted certain non-linear terms which are of minor significance.

4. Linear membrane theory. We indicate the values of quantities obtained from
linear membrane theory by subscripts LM and define linear membrane theory through
the relations

D = 0, (21)

Qlm = ^vlm cos 0 ^hlm sin </> = 0. (22)

Therewith, on the basis of (18) and (13),

\T ^HLM TIT ^HLM i /00\
NILM — , j NeLM ~~ ~r 1"Phlm • (23)r cos 0 a

The quantities ^hlm and 'i'VLM satisfy the reduced version of Eq. (Ill) but do not
satisfy the linearized version of Eq. (IV) with pLM small. In fact, this latter equation
requires in general that Plm = ro whenever sin 0 = 0.

5. Supplementation of linear membrane theory. We now remove the restrictive
assumption of vanishing D and in addition to this consider supplementary stress re-
sultants Qs , N(S , Nes and supplementary stress functions ^Hs , such that

= ^HLM + ^vlm + Vrs ■ (24)

We further write

rN(s = ^vs sin <j> + ^HS cos 0, rQs = MVs cos 4> — SI'tfs sin </> (25)

and have then

N( = NlLM + N(s + &Qs , (26)

Q = Qs fiN(lm /3N{s . (27)
Equations (26) and (27) are complemented by

Ng- = N qlm + Nf.s (28)

where N,LM is given by (23) and

aNes = ^'Hs + rapHS (29)
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It remains to obtain the differential equations for /J and ^Hs , which follow from
Equations (III) and (IV). Introduction of (24) together with (22), into Eq. (Ill) gives
as the first of the two simultaneous equations for the determination of the supplementary
solutions

(rD/a)' _ (r^ _ (r'D/a)'\
^ (rD/a) P \ r2 v (rD/a) J

= fp (^7/s sin </> - cos </>) + " ^LM 0 + ~ (<frHS cos <t> + sin <£)/3. (V)

It is possible to obtain the second of the two simultaneous equations in a similar
manner from Eq. (IV). A somewhat similar form of the results is obtained by returning
to the compatibility equation (14) in the approximate form

(ree)' — aej cos <j> = — a(j3 sin <f> + f/32 cos </>) (30)

and by neglecting the term /3QS in Equation (26). In this way we obtain

.(r/Ca)' lr'2 (r'/Ca) \
HS + (r/Ca) HS \r2 + (r/Ca) ) HS

aC ,n . , , , „2 ,, , (a2 C0S</> aC'
  (/3 sm <j> + i/3 cos <t>) + 2— — v -77r \ r rL

a f C'
+ V- $rvs sin <t>)' - ( (2 + v)a cos 0 - ra — )pl/s — arp'HS

aC
r

I V eLM — vN {tA/V vNgLM^  J — a —5   cos (t> (VI)

For many applications, in particular for the application to the problem of the toroidal
shell with circular cross section and uniform internal pressure, Equation (V) and (VI)
may be further simplified by omission of a number of terms, such that

(rD/a)' _(r^_v (r'D/a)'\
P + rD/a P \r2 (rD/a) )

a2 „ . . , , a2N{
= ~ (*„s sin 4> - *vs cos 0) + p, (VII)

(r/Ca)' _ (r^ , (r'/Ca)'
(r/Ca) "s \r2 + V (r/Ca)

aC . ^ aC
 18 sm 6 r r

N eh m
c - a N(lm cvNeL" cos 0 J. (VIII)

In other problems, such as in the problem of the flat plate subjected to lateral loads,
omission of the non-linear portions involving ^HS and /J would not be admissible. We
note that, consistent with the neglect of these terms in Eqs. (V) and (VI), the j32-term
in Eq. (20) may likewise be neglected.

6. Load terms with separation of effect of uniform normal pressure. We assume as
expression for the load intensity components pv and pH in Eqs. (1), (2), (10), (11) and (II)

Vh = (1 + e()P sin $ + pHA , (31)
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pr = -(1 + e£)p COS $ + pVA , (32)

where p is a uniform normal pressure and pHA and pVA are additional load intensity
components such as inertia force intensities for rotating and or axially accelerating
shells which are assumed to be unaffected by the deformation of the shell. We further
write

Phlm = V sin <t>, Pvlm - ~P cos <j>, (33)

and associate our linear membrane theory solution with this particular load distribution.
We then have from (10)

= p f ra( 1 + ef) cos $ + SfVA . (34)

The integral for the normal pressure load p in (34) may be evaluated explicitly, if use
is made of the compatibility equation (14) and of the assumption of small strain. We
have, in view of (14)

J ra( 1 + e£) cos <f> d% = J r[a cos <f> + (re9)'] d£

= J r[r(l + «,)]' d£ = (1 + e„)r2 — J (1 + ee)rr' d£. (35)

Neglecting es in comparison with unity we have from (34)

= hpr2 + const. + ^rrA . (36)

We shall assume that the undeformed shell has tangent planes perpendicular to the shell
axis for just one value r = a and allocate part of the constant in (36) to Vvlm such
that Nand N0i.m remain finite for r = a. This means that we have

= *vlm + , (37)

where

^YLM — ~ a)> ^VS = k + ^VA- (38)

We further write instead of (31)

Ph = Phlm "I" Phs , (39)

where Phlm is given by (33) and where

Phs = pP cos <t> + p„A , (40)

7. Toroidal shell with uniform circular cross section subjected to uniform normal
pressure. We take the equation of the middle surface of the shell in the form

r = a + b sin £, z = —b cos £ (41)

and have then

r' = b cos£, z' = b sin f, a = b, <t> = %■ (42)

We assume that the stiffness factors C and D are independent of £ and that pVA = pHA = 0.
We set as abbreviations
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b/a — X, pb5/D = P (43)

and have then, from (38)

*vlm = pba(sin £ + £X sin2 £) (44)

and from (22), (23) and (33) the well known known formulas

,T , 1 + iXsinf
Nilm — pb i ^ g-n ^ > N)lm — 2pb (45)

From (25) and (38) follows that

k sin £ + ^rHS cos £ ^ k cos £ — ^/,s sin £
NiS ~ a(l + X sin £) ' Qs ~ a(l + X sin £) (4b)

with Ne and Q given by (26) and (27).
From Equations (29) follows that

bNes = "Hs + pab{ 1 + X sin £)/? cos £ (47)

where the term with /3 will turn out to be small of higher order.
Expressions for stress couples follow from (17) in the form

m( - -£>(t + i + cxos* ttl> M°= -i)(i IT-Sf +y?) (48)\6 1 + Xsinf o/ \1+Xsm£& b /

and Eq. (20) for the axial displacement w assumes the form

VL _ ^ ^ sin £ + /3 cos £ (49)

The differential equations (VII) and (VIII) for the determination of /3 and ^HS
now read as follows

, X cos£ _ / X2 cos2 £ vXsing \
1 + X sin | \(1 + X sin £)2 1 + X sin £/1 + X sin £ \(1 + X sin £) 1 + X sin £/

 6^ / sin £ _ fc cos £ \ 1 + |X sin £
aD \1 + X sin £ "'s 1 + X sin £/ p 1 + X sin £ ' (50)

X cos £ / X2 cos2 £ "X sin £ \
+ 1 + X sin rHS ~ 1(1 + X sin £)2 ~ 1 + X sin ^

62C sing pfr3 cos £ . .
a 1 + X sin £ 2a (1 + X sin £)2

Equations (50) and (51) are to be solved subject to appropriate boundary conditions.
Four of such boundary conditions are the symmetry conditions of vanishing 0 and Q
for £ = ±57!-. Inspection of Eq. (27) and (46) indicates that the four symmetry conditions
may be written in the form

£ = ±Jx: 0 = 0, *HS = 0. (52)

Two additional symmetry conditions are the conditions of vanishing axial displace-
ment w for £ = ±7r/2. Insofar as the solution of (50) and (51) is concerned, these two
conditions may be replaced by the single condition w' d% = 0 or, in view of (49),
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(47), (46) and (45), by

fr/2 [" ilk sin £ + Vns cos | v$'BS\ 1
J-./, La a(l + Xsinl) b~) S'" 1 + 6 C0S «J «

/"T/2 1 + §Asinf . „ 7„ pb 7T r/, ,2N-i/2 „ /roN
= C.L„ 1 + \ gin £ s ~ C 2X — ̂ ) "I! <53)

For the satisfaction of the five conditions (52) and (53) we have at our disposal four
constants of integration in the solution of the two simultaneous second order equations
(50) and (51), in addition to the constant value k of SfVs .

Inspection of the system (50) to (53) indicates once more the necessity of the presence
of the supplementary solution ^HS to avoid /3 becoming infinite for £ = 0 and £ = t.
It is further seen that both the linear bending theory formulation and the non-linear
membrane theory formulation of the problem are included in (50) to (53), the former
corresponding to the assumption p = 0, and the latter corresponding to the assumption
D = 0 (and p = <») in Equation (50).

8. Non-dimensionalization of dependent variables. In order to see to what extent
the problem is one without boundary layer phenomena, we consider the following non-
dimensionalization

0 = /«), = o G(&, k = *0 K, (54)
where

(55)

b2 /S„ b2C= = (56)

b*(C\l/2 2m1/262

From (56) and (55) follows

- = = t12^ - ^ 5* w
0 - to _&1 _ _ p^
P°- n aD~ fiD ~ n (58)

We note that A/m = (h/b)/[l2(l — i>2]l/2 is always small compared to unity.
The differential equations (50) and (51) are now

A cosg _ / A2 cos2 £ "A sing \
1 + A sin £ \(1 + A sin £)2 1 + A sin £/

= M sin £ r p(l + |A sin £) _ nK cos £
1 + A sin £ 1 + A sin £ 1 + A sin £ ' { '

r,, A cos £ r, _ I A2 cos2 £ v\ sin £ \
1 + A sin £ \(1 + A sin £)2 1 + A sin £/

r;n| ,f+,'r-'rf «*»1 + A sin £ (1 + A sin £)

and the boundary conditions (52) and (53) are
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£ = ±tt/2: F = G = 0 (61)
and

. r/2L K sm £ + G cos £ ^ ^—, 2 , ■ ..—- - v — I sm £ + -5 F cos |1 + X sm | X / X
# = ^3 [(1 - X2)-1/2- 1] (62)

Mi =

Expressions for the relevant stress resultants and stress couples are, except for
quantities which are small of higher order,

"i = 7 + »' gC,0Si,+ Kf'';) (6®\ 1 + X sm £ 1 + X sm £ /

Ne = pb(i + XG') (64)

pbh\ ( v\ cos £ \ . .
' [12(1 - p2)]M + 1 + X sinl F) , (6o)

In order that the solution of (59) to (62) does not exhibit boundary layer phenomena
we must have that v as well as p are at most of order unity. This implies that the param-
eter X must be small compared to unity, and this in turn implies that bending stresses
as well as corrections to the membrane stresses of linear theory are small compared to
the primary membrane stresses — pb/h and <reLM — pb/2h. To the extent that such
corrections are desired, they may be based on the abbreviated system

F" = nG sin £ + PF, (66)

G" — —yuF sin £ + \ cos £, (67)

together with the boundary conditions (61), while the boundary condition (62) reduces to
the condition that F be an odd function of £ and G be an even function of £, with K — 0.

9. Non-dimensionalization of independent variable. It is implied by the structure
of the differential equations (59) and (60) that when y. and or p are large compared to
unity, the neighborhood of £ = 0 is a region of relatively rapid changes of the dependent
variables F and G, that is, an analysis of the boundary layer type is indicated. For the
purpose of this analysis a new independent variable ij is introduced in the form

V = (68)
where r 1 such that a narrow layer surrounding £ = 0 becomes a layer surrounding
77 = 0, of width of order unity.

We further write in Equations (59) to (62)

F = F0/(17), G = G0g(v), K = G0c, (69)

and, as we are concerned with the neighborhood of £ = 0,

sin £ = y/r, cos£ = 1. (70)

It remains to choose the parameters r, F0 and G0. Two conditions for the determina-
tion of these parameters follow from Eq. (60) if we require that terms with F, G" and
1/2 are of comparable magnitude, by setting

r2G0 = t"Vo = 1. (71)

A third condition follows from Eq. (59) in one of two ways. We may either require that
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F" and G terms are of comparable magnitude, which implies that bending action is
significant, or we may require that the F and G terms are of comparable magnitude
which implies that non-linear membrane action is significant.* Accordingly we set

(i) t2F o = r-VG'o (72)
or

(ii) r-^Go = pF0 . (73)
Solving (71) to (73) we have further

(i) r = M1/3, F0 = M-2/3, Go = m~2/3, (74)

or
1/2 -1/1 tt -1/2 -1/1 r* -1 1/2 /TE\(11) T = H P , ta = H P , G0 = IX p . (75)

For both cases we have from (60) as one of the two simultaneous differential equations
which are to be solved

g" + vf=h (76)
and from Eq. (59)

(i) f" - vg = p»~2/3f - c (77)
or

(ii) mp'3/2/" ~v9 = f~c. (78)

Equations (76) and (77) or (78) are valid provided r 5$> 1. In view of (74) and (75) we
have then as condition for the appropriateness of a boundary layer analysis,

Max (1, p1/6) «M1/3. (79)

From Eq. (77) follows further that linear bending theory is appropriate as long as
P « m2/3, (80)

and from Eq. (78) follows that non-linear membrane theory is appropriate as long as
m2/3 « P- (81)

In the transition region, say for 0.1 /i2/3 < p < 5p.2/3t both linear bending and non-linear
membrane action have to be taken account of simultaneously.

Boundary conditions for the solutions of the differential equations (76) and (77) or
(78) follow from (61) and (62) in the form

77=±°°: f = g = 0 (82)
and, except for terms which are small of higher order,

(i) f ^ f(n) dv = ~ [(1 - AT" - 1] (83)
or

(ii) f 7 ' f(v) dv = ~ ((1 - X2r1/2 - 1). (84)
J—fii/2p~*/+ aA

Expressions for relevant stress resultants and stress couples follow from (63) to (65)

*The analysis here is similar in nature to earlier work on the edge effect in bending of shells [4, 5],
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in the form

® »>-I+$•«<>)• m

(i) Ne = pb(h + TTi ?'(>»)) (87)

(ii) = + (88)

® M'" - (^"/'(4 (8«

® - P(fr7jr (7™(90)
Equations (87) and (89) show that when consideration of wall bending is indicated,

bending stresses <riB and corrections to the values of the direct stresses aSD as given by-
linear membrane theory are of the same order of magnitude and of order n~1/3 relative to
a(DLM . Corrections to <j(d are of order pT2/3 relative to <r(DLM •

In the range of parameter values for which non-linear membrane theory applies,
it is found, in view of the fact that both p1/2 <K p- and p. « p3/2, that aiB as well as cor-
rections to <t(Dlm are small compared to the corrections to <tbdlm and that this correction
in turn is small compared to oodlm ■

Accordingly, our analysis indicates that the distribution of stress as given by linear
membrane theory is changed in a minor was only,* if account is taken of bending stresses
and supplementary membrane stresses which are required to enforce continuity of
displacements in the toroidal shell under uniform normal pressure, regardless of whether
the problem is one of linear bending theory or of non-linear membrane theory, or one
falling into the transition region between linear bending theory and non-linear membrane
theory. Beyond establishing this particular fact, the equations of the present paper may
be used for the analysis of pressurized shells of revolution under arbitrary symmetrical
loads, under conditions where wall bending action and or the effect of pressurization are
significant.
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