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ON THE STRESS DISTRIBUTION IN ANISOTROPIC INFINITE WEDGES
BY

J. P. BENTHEM
National Aero- and Astronautical Research Institute, Amsterdam.

Summary. The differential equation for Airy's stress function is given in oblique
coordinates. The stresses are written as sums of four functions of complex variables.
To these sums and to the boundary conditions the Mellin transform is applied. The
inverse transform delivers the formal solution.

1. Introduction. Generally, stress-problems of infinite isotropic wedges, loaded in
their plane, are solved with the aid of polar coordinates r, 6. Tranter [1] and Sneddon [2]
give, through application of the Mellin transform, solutions for prescribed stresses along
the boundaries 6 — constant.

The attempt to obtain solutions for the anisotropic wedge along the same lines fails,
because the differential equations which arise in that case do not have coefficients inde-
pendent of 0. Only in some very special cases coordinates r, 6

x' = r cos 6, y' = rsin 8,

where x', y' are obtained from some linear transformation from orthogonal coordinates,
offer the solution. In such a way Lang [3] dealt with a half plane with a special form of
orthotropy.

In this paper use will be made of an oblique linear coordinate system. The x and
y-axes are chosen along the boundaries of the wedge. The wedge angle a lies between 0
and %. Some minor specializations are necessary for other wedge angles.

Further particulars about the present investigation are given in [4],
2. Airy's stress function in oblique coordinates and a general form of its solution.

2.1 The stress function. The oblique stress components are sx , s„ and t (Fig. 1). At
the right hand side dy of the infinitesimal rhomb act forces sxh dy and th dy in the di-
rection of the positive x and y axis respectively (plate thickness is h).
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From equilibrium considerations follows that both stresses t are equal and that, in
absence of mass forces,

7T + ;r = 0' f" + ? = 0- (2-i)dx dy dy dx

The stresses can thus be expressed with the aid of a function \p like Airy's stress
function,

s 8 = t = - 9,2 * ■ (2 2)
S* dy2 ' S" dx2 ' 1 dx dy {Z'Z)

A displacement vector u is indicated by its orthogonal projections ux and uv (Fig. 1)
and strains are defined by

dux duv dux . du„
= "7 , e„ = — , y = — h — ■ (2.3)dx dy dy dx

The physical meaning of the strain tx is the specific extension (ds — ds0)/ds0 of a
line element dx (side of the rhombus, Fig. 1), where ds is the length in the strained state
and ds0 the length in the unstrained state of the line element. The same is true for
and a line element dy. The strain 7 has no simple geometrical meaning. If 7' represents
the decrease of the angle between dx and dy (the sides of the rhombus) the relation be-
tween tx , e„, 7 and 7' is

7' sin a = 7 — (e* + e„) COS a.

From (2.3) follows the compatibility relation
«\2
£i| + = _iTL. (2.4)
dy dx dx dy

The strain-stress relations have the form

(x — a„s, -(- a12s„ -f- <xi3t,

ty — Ct21®z ^22^23^) (2.5)

7 = a3iSx + a32sy + a33t, where a,, = a,-,- .

For the isotropic plate the values of the elements of the matrix a,-,- follow from

1 cos2 a — v sin2 a 2 cos a

Eh an sin a cos2 a — v sin2 a 1 2 cos a

2 COS a 2 COS a 2(1 + COS2 a + v sin2 a)_

Substitution of (2.5) and (2.2) into (2.4) gives the partial differential equation for ^

^4 , ^4 » \I/
022 a? ~ 2a23 ~toz~dy + (2<l12 + fl33) d^dtf ~ 2fll3 d^dy* + au ~dy~4 = 0 (2"6)

If it is assumed that \p is differentiable 4 times, (2.6) can be written in the form of

(~Xi h + i)(~X2 £ + ^)(~X3 h + h + =0> (2,7)
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where Xj , X2 , X3 and X4 are the roots of

au\* — 2a13X3 + (2 al2 + a33)X2 — 2a23X + a22 = 0. (2.8)

The condition that the differential equation (2.6) gives physically possible solutions
is that the roots X, are complex. It can be proved that these roots are in fact complex
because of the condition that the strain energy function is always positive [5]. Hence
there are always four distinct roots (X! and X2 conjugate complex, X3 and X4 conjugate
complex) or two equal pairs of distinct roots (Xj = X3 , X2 = X4 , Xj and X2 conjugate
complex).

2.2 Distinct roots X< . If the four roots X; are distinct the general solution of (2.7) is

i = X! /*fc + X.Z/] (2.9)
% =1

where the /U are four arbitrary functions, each function f*[x + X,?/] being four times
differentiable with respect to the complex variable1 x + X,?/.

The solution for the stresses becomes with the aid of (2.2)

s* = X) X-/*"[z + X.2/], su = f*"[x + X,?/], t = - Yj + \ty], (2.10)
where

_ d21*M
du-/?"[«] - jZJ

Replacing /?" by /,
s* = X + X,2/]j «, = X f>[* + *iV], t = - Z) ^./»+ X,?/]. (2.11)

Realizing that the stresses must be real /* = /*,/* = /*, /2 == A , /4 = /3 , i.e. the
functions and j* are conjugate complex etc.

2.3 Two equals pairs o/ distinct roots X,- . This case includes the isotropic plate
(Xi ,2 = cos a ± i sin a). It is proved in [6] that the plate has the special form of ortho-
trophy used by Lang [3]. The partial differential equation (2.7) now takes the form

and its general solution is
2

= X {/*[* + A,?/] + (x - \iy)g*i[x -|- X,?/]} (2.13)
»=1

where /*,/*, g* , 9* are arbitrary functions.
For the isotropic plate and a = ir/2 the differential equation (2.12) becomes

(Xi ,2 = ±i)

{b + i?) += 0
and its general solution (2.13) has the well known form

= /*[z] + f*[z\ + zg*[z\ + zg*[z\

where z = x + iy, z = x — iy.

1 From the theory of complex functions it follows that then the f* [x + \;y] are analytic.
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With the aid of (2.2) and replacing /?" by /,• and g*' by g{, the solution for the stresses
becomes

sx = X-{/i[a; + \iy] - 2g([x + X,i/] + (x - \iy)g-[x + X.y]}

s« = Z) lfdx + X.2/] + 2gi[x + X4y] + (x - X^g'[x + X,?/]} (2.14)
t = - 23 X,{/,[z + X,2/] + (a; - \iy)g[[x + X.y]}

3. Stresses in wedges with loaded boundaries. 3.1 Distinct roots X, . It is supposed
that no concentrated forces act at the vertex and that the stresses within the wedge at
infinity tend to zero. The boundary conditions are

• along x = 0: s* = p^y], t = p2[y], (3.1)

along y = 0: s„ = p3[x], t = p4[z], (3.2)

where the known functions , p2 , p3 , Pi are such that their Mellin transforms

[ PilvW1 dy etc. (3.3)
Jo

converge within a strip

Ci < Re s < c2 , c, < 1 < c2 . (3.4)

The fact that the integrals (3.3) in case s = 1,

/ vdy] dy
Jo

etc.

converge means, of course, that the surface tractions have finite resultants.
Substitution of (2.11) into (3.1), taking x = 0, gives

X) Xi/<[x,t/] = pdy], -H ^ifdKy] = vAy), (3.5)
and substitution of (2.11) into (3.2), taking y = 0, gives

X) = V*[x], ~ X X</,-[x] = pt[x}. (3.6)
If the Mellin transform

[ ■■■ y"1 dy (3.7)
J 0

is applied to both sides of (3.5), the result for a function /,[X,-2/] becomes

f fdhvW'1 dy = X7' [ /.•[X,-2/](Xi2/)*"1 d(\<y)
Jy= 0 0

= X7* [ fjuju-1 du, i = 1, 2, 3, 4.
Jo

(3.8)

In the last integral of (3.8) the upper limit X, oo may not be replaced by eo without
any more. Then the integration would extend along the real axis of the u plane. If X,- =
Vi + & the line of integration in the u plane has to be according to fig. 2, line 1 but it
will be proved that this line may be replaced by line 2.

Suppose that within the wedge /,•[«] is of order 0(u~h), k positive if mod u = r —*■ oo

u = r exp id. (3.9)
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lm u

LINE 2

Fig. 2.

Then the integral

/ 1Au]u'~ldu

along a line r = constant for r —* <*>, which connects integration line 2 with integration
line 1, becomes zero if

Re s < k.
Besides, if it is assumed that the functions fi[x + X;?/] are analytic within the wedge

(the assumptions concerning the /,[u] will be confirmed) the functions /,•[«] are analytic
within the integration lines 1 and 2 and the arc r —» connecting these lines. Thus

\~i' [ ' fMu"1 du = XT' [ fiMu-1 du = X7'F,[s] (3.10)
Jo Jo

where F<[s] is the Mellin transform of /,[m].
Application of the Mellin transform to the functions pi [y] and p2[y] gives

f vAvV1 dy = PJs]; i = 1, 2. (3.11)
Jo

Also to both sides of (3.6) the Mellin transform

[ ■■■ x-1 dx (3.12)
Jo

is applied. This gives for a function fi[x]

f fAxfr"1 dx = F,[s], i = 1, 2, 3, 4 (3.13)
Jo

and for p3[z] and p4[x]

f Pi[x]x' 1 dx = P,[s], i = 3, 4. (3.14)
J 0

The results are the following equations:

2: xr*F,[S] = -p2[S],
(3.15)

E = p3[S],
Z \>F,[s] = —P4[s];

these can be solved for the functions F,[s].
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Along a line y — /3x the stresses are derived by first putting (2.11) into the form

st[a;, /3] = >w/i[z(l + /3Xf)]/

s*[x, /3] = fi[x( 1 + /3X,)], (3.16)
t*[x, /3] = Yj —[cc(l + /3X,)],

and subsequent application of the Mellin transform (3.12), which gives (compare (3.8)
and (3.10))

SAs, /s] = Z X*(l +
S.[s,p] = £ (1 + M-Ftl*], (3-17)
T[8,0] = -Ex.d + fr<)-Ft[s],

where Sx , S„ and T are the transforms of s* , s* and I*.
The stresses s%[x, /3], s*[x, /9], t*[x, /3] follow after application of the inverse Mellin

transform to (3.17), for example

s%[x, iff] = ~ E X?(l + p\t)-Ft[afr- ds (3.18)

or

sjz, y] = g". £ J2 X?F, [s](a; + X,z/)~* ds (3.19)

where c = Res must of course satisfy (3.4).
The admissibility of the inverse Mellin transform (3.18) can be further verified by

proving that the four parts of the integrand of (3.18) all tend to zero exponentially
(0 < (3 < oo) along a line s = a + hi, where a is a finite constant between cx and c2 of
(3.4) and b —» ± <o.

Hence, the integrand of (3.19) may be differentiated with respect to x and y an
indefinite number of times (x > 0, y > 0) from which it can be concluded that the
stresses within the wedge are analytic functions. In addition it can be remarked that
for the same reason the y^-siu:ii in expression (3.19) may be put before the integral.

If the functions F,[s] have no pole at s = 1, it can be stated that in addition to the
requirement (3.4) s must lie in a strip where the F,[s] have no poles, which include the
point s = l.

If, however, s = 1 is a pole of the functions F,[s] then Re s < 1, one of the boundaries
of the (pole free) strip being the line Re s = 1.

By taking other strips, where the functions F,[s] are regular and which do not violate
(3.4), stresses stemming from residues of the poles of the integrand of (3.19) are intro-
duced. This would cause that stresses which do not satisfy the desired conditions at the
vertex or at infinity are introduced.

In general, residues of poles of the integrand of (3.19) (also of those outside the region
of (3.4)) describe stress systems, which give zero stresses along the boundaries. Such
systems were derived by Williams [7] for isotropic plates. They include cases of a con-
centrated force or moment acting at the vertex (poles at s = 1 and s = 2 respectively).

3.2 Two equal pairs of distinct roots X,- . The derivation for the case of two equal
pairs of distinct roots follows the same lines as those of section 3.1.

'The asterisk is introduced to distinguish the functions sx of (3.18) and (3.19) respectively.
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Substitution of the boundary conditions (3.1), (3.2) into (2.14) gives

Z Xi{/,[x,t/] - 2<7i[x,i/] - x^sr^x.y]} = pAy],
- Z M/.[x,-2/] - = P2[y],
Z {/<M + 2gi[x\ + xg[[x]} = Vz[x],

~ Z X<{/,[z] + xg'i[x}\ = v^x].
On the equations (3.20) the Mellin transforms (3.7) and (3.12) are applied respec-

tively. If /<\[.s] and (7, [s] are the Mellin transforms of /,• and gt , the result is

Z (X?"f<M + (« - 2)xr*G.M) = PiW,
Z (xj-^w + «x;-g<m) = -p2[s], (3 21)

Z ™ - (« - 2)(?,[s]) = p3[s],

Z (X^,[s] - sX.GJs]) = -P4[«],
from which the functions P;[s] and G,[s] can be obtained.

The stresses along a line y = fix according to (2.14) are

stfr, P] = Z Xi{/.fr(l + |8X,-)] - %g<[x{l + /3X,-)] + z(l - jSXOffJWl + 0X,)]},
s*y[x, p] = Z {/<[»(! + /3X.)] + 2gf,[a:(l + /SX,-)] + z(l - fiX^g'^xil + /3X,)]j, (3.22)

t*[x, /S] = — Z X,{/i[z(l + /SX,-)] + x(l - /3X<)^[z(l + ySX,)]},
and the Mellin transforms

Sx[s, p] = Z X?(1 + /SXO'^W + (-2 -

S.[», P] = Z (1 + /3X,.)-'{^.-[s] + (2 - 3-=-^ «)<?,[«]}, (3.23)

r[»,fl = - Z x,.(i + /3xtry,[s] -

The stresses sjx, y], s„[x, y], t[x, y] are obtained by application of the inverse Mellin
transform. For example

*>■91 - S3 C 2 «{'•« "(2 + *)®'l[s]|(® + \fy)-d8. (3.24)

4. Illustrative example. As illustrative example a wedge with

X! = ki, X2 = —ki, X3 = i/k, X4 = — i/k (4.1)

is taken, where k is a real constant greater than 1.
The boundary conditions (3.1), (3.2) are such that along x = 0;

0 < y < b sx = -p,

y > b sx = 0, (4.2)

y > 0 t = 0;
along y = 0:
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0 < X < b Sv = — p,

x > b s„ = 0, (4.3)

x > 0 t = 0.

The subsequent analysis is based on (4.1), (4.2) and (4.3) in which the wedge angle
a, i.e. the angle between the coordinate axes does not occur and may have any value
(0 < a < x).

If this angle happens to be t/2, the wedge is orthotopic, its directions of orthotropy
being in the directions of the coordinate axes and boundaries of the wedge. This is not
the special form of orthotropy mentioned in sections 1 and 2.3 which allows a dealing
with the aid of polar coordinates.

The orthotopic plate has the strain-stress relations

  1   ^xy
e" ~ Exh x EJi "

■—s i L „Eyh 1 ^ Eyh "

_t_
Gh

(4.4)

where both elasticity moduli are equal, Ex = Ey = E and both Poisson's ratios
Vxv — Vvx = v. But the relation

E/G = 2r + k2 + l/k2 (4.5)

is not that of isotropic plates, being E/G = 2v + 2.
The present case of orthotropy may occur at plywood with three equal layers, the

middle layer however twice as thick as both others and with their length directions
alternating in x and y directions, which are mutually orthogonal. Of course the range of
fc(l < k < oo) covers all cases of such orthotropy.

It be noted that for a = x/2 and k limits to 1 the solution must limit to that of
Sneddon, [2] for a — ir/2. Actual verification was carried out [8].

Following now the lines of section 3.1, the solutions for the functions (3.15) are

—pb"{k~' exp (±S7rt'/2) + 1|
Fl-'~ 2 skl-H[k,s] ' (4'6)

_ pb'jk' exp ± siri/2) + 1}
3 i 2sk'~1H[k, s] ' { '

with

H[k, s] = (k - k'1) sin (s - 1)tt/2 + (k"1 - k1-).1 (4.8)

These solutions substituted into (3.19) gives the expression for the stresses sr[x, y]
and similarly for sv[a:, y] and t[x, y].

»'" m sfiMi A'[k'81 <4 9)

^his form becomes for k —> 1 H[k, s] = sin(s — 1V/2 + s — 1 and occurs in ref. 2, 7 a.o. for
a = ir/2.
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vl - ik L. ssbi Ml\!| *' (4-10)
"*>»i (4'n)

where

^4 S1 — 1C2 [A:, s]
ll ' J i£2[/s,«] ' ( }

A [fc si — 'Ciffii s] _i_ fcC2[fc, s] .^'SJ~ 22,14,«] + £,[*,•]' (4>13)

nn , #,[M] K2[k, S]
B[k> S] ~ ~ Rdk,s] + ^[Ml' (4"14)

Ci,2[^) s] = cos (x/2 — <P!,2)s + kcossv»i,2 , (4.15)

Ki,2[k, s] = sin (x/2 — ^!,2)s — A:** sin s<pU2 , (4.16)
fii,![M] = (x2 + r!!/!)'", (4.17)

^ffVi.2 = k"ly/x, 0 < <P!,2 < x/2. (4.18)

The integrations of (4.9)-(4.11) have to be carried out within the strip 0 <
Res<l(0<c<l). This may be done by Filon's method [9].

For points x, y which lay outside both ellipses y2 + x2/k2 = 62 and x2 + y2/k2 = b2
the integration path may be replaced by an infinite arc in the (right) half-plane Re s > 0
and clockwise contours around the poles in this half-plane. Only these poles contribute
to the integration. The residue theorem delivers from (4.9) the convergent series for s*

Jja m

«*[x, y] = -pZ s H'yk s j Sm], (4.19)

H'[k, s] = (x/2)(k - k'1) cos (s - l)x/2 + (k'~l + k1'') In k. (4.20)

In (4.19) the s„ are the zero's in the plane Re s > 0 of H[k, s] of (4.8). The leading
term is obtained by sm = 1.

r 1 b x2(y + x)(Jc* — 1) . . .
«.[«, V] p (k - Ox/2 + 2 In k (x2 + k2y2)(k2x2 + y2) + " ' ' ( )

Likewise,

r i & y2(y + x)(fc4 — i)
S"[X' V]~ P(k- ife-V/2 + 2 In * (z2 + fcV)(fcV + 2/2) ' ( >

/fa. wl = _B _J?  xv(y + *)(fc4 - !) . ... (a 2S\
1 ' 2/1 (k — r')x/2 + 2 In & (z2 + k2y2)(k2x2 + y2) ' ( >

For values of x, y which lay inside both ellipses k2x2 + y2 = b2 and x + k2y2 = b2 the
integration of (4.9)-(4.11) is replaced by anti-clockwise integration around the zero's
of sH[k, s] in the halfplane Re s < 0. The result is

b8n
s*[x, y] = -P + fZ sH,yc 8J A^k, s„], + • • • (4.24)

where the s„ are the zero's of H[k, s] in the half-plane Re s < 0. The first term on the
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right hand side of (4.24) stems from the pole of the integrand of (4.9) in s = 0. Likewise,

s„[z, y] = -p + • • • .
For t[x, y] no such a constant first term is present.

Zero's of H[k, s] in the (whole) s plane are at the following values of s:

for k = 5 s = 1,
s = 1 ± 1.7421 ± 1.2277i,
s = 1 ± 3.6935 ± 3.227It,

for k = 2 s = 1,
s = 1 ± 2.4122 ± 1.2550i,
s = 1 ± 5.7915 ± 2.7390i,

and limiting values for k —» 1 are

8=1,

s = 1 ± 2.7396 ± 1.1190t,
s = 1 ± 6.8449 ± 1.6816t,

An asymptotic formula which gives results enough accurate for almost all zero's
is (k not close to 1)

7t2(4m — 1) — 4 In k In q 2x In q + 2x(4m — 1) In k .
s« ~ ± T» + (2 ^ kf ir2 + (2 In k)2 h

m = 1,2, 3,
q = 2Ic/(k2 - 1).

For k = 1 see roots and asymptotic formula in ref. 10.
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