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0 = 3y(r — 5x2)r~7 + 3x(r2 — 5y2)r~7 — \hxyzr~7 ~ ,

1 = — I5xz3/(4r7) ~ — \5yz*/(4r7) -py + (9zY — 15z*)/(4r7) ~~ ,o\f/ o\y oxf/

which are obtained by differentiating $ = 3xyr~5, \p = (3/4)2'V~5, x — (x2 — y2)z~2
with respect to \p. The other sets result from differentiating with respect to $ and x-
The Jacobian of $, \p, x with respect to x, y, z has the value:

J = 9r~12[5x2y2 - r2(x2 + y2)}.

Now on $ = 3E>o, the element of length ds is given by ds2 = E d\p2 + 2F d\p dx + G dx
where E, F, G have the usual meaning in terms of the derivatives with respect to ip,
and x; and the element of surface area is da = (EG — F2)1/2 d\p dx- In view of the form of
E, F, G this reduces to J-1 V$ dxp dx- The flux through $ = 3>0 is /J Q-da =
// (V^ X Vx)-«^_IV$ d\p dx- But V$-V^ X Vx = J so the flux is just J/ d\p dx-
If the area is bounded by the curves \p = v^i , *P — ^2 and x = Xi , X = X2 the value
obtained is (\p2 — *Pi) • (X2 — Xi), an obvious extension of the property which Stokes'
stream function has.

Figure 1 shows two octants of the two stream surfaces with two members of the
family of cones but only one of the closed surfaces. The streamlines in which these meet
are indicated as heavy curves.

SYMMETRIC DUAL QUADRATIC PROGRAMS*
By RICHARD W. COTTLE (Operations Research Center, University of California, Berkeley)

1. Introduction. The duality theory of quadratic programming has been studied
by Dennis [1] and principally by Dorn [2, 3, 4]. Wolfe [7] has specialized his results in
nonlinear programming to the case of quadratic programming.

In this paper, two quadratic programs are presented which are dual, naturally
symmetric, and related to a self-dual quadratic program. It is a consequence of the duality
of these programs that if either has an optimal solution, then they share an optimal
solution in common. Since duality, symmetry, and self-duality have each been studied
by Dorn, some attention is given to the relation between the present work and his.

The programs to be considered are:

Primal Program (P):

Minimize Fix, y) = \y' Dy + \x'Cx + p'x (la)
subject to Dy + Ax > —b (lb)
and x > 0; (lc)

*Received December 18, 1962; revised manuscript received March 15, 1963. This research has
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Dual Program (P*):

Maximize G(x, y) = — \v'Dv — \u'Cu — b'u (2a)
subject to — A'v + Cu> —p (2b)
and v >0 (2c)

The entries of all matrices and vectors are real numbers. The symbols used in (1) and
(2) have the following meanings: A is an m X n matrix; C, a symmetric positive semi-
definite n X n matrix; D, a symmetric positive in X m matrix; b, an m-vector (column);
y, v, rn-vectors (column); p, an n-vector (column); x, u, n-vectors (column). The entries
of A, C, D, b, and p are constants whereas those of x, y, u, and v are variables. An in-
equality between vectors means that the stated inequality holds between each of the
corresponding components. The transpose of a vector or a matrix is denoted by a prime.

2. Notation and terminology. The primal program (P) will have the constraint set

P = {(x, y) | Dy + Ax > —b,x> 0},

and the dual program (P*) will have the constraint set

P* — {(u, v) | — A'v + Cu > —p, v > 0}.

An element of P or P* is said to be a feasible solution of (P) or (P*), respectively. A
program is injeasible if its constraint set is empty. (The empty set will be denoted 0.)

A program is said to be solvable if its constraint set contains an element for which its
objective function (F in (P) or G in (P*)) attains the desired extremum. Such an element
is called an optimal solution of the program and is said to solve it.

It will be shown that a relation of duality holds between (P) and (P*) in the sense
(see [7]) that:

(i) sup/.. G < infp F;
(ii) the solvability of one problem implies that of the other, and the extremal values

of F and G are equal;
(iii) if one problem is feasible while the other is not, then on its constraint set, the

objective function of the feasible program is unbounded in the direction of
extremization.

When D is a zero matrix, the dual programs of Dorn [2] appear. When both C and D
are zero matrices, the familiar (von Neumann) symmetric dual linear programs result.

It is easy to see that if (P*) is written as a minimization problem, then its dual is
just (P) written as a maximization problem. Roughly speaking, then, the dual of the
dual is the primal. It is this involutory property which Dorn [3] calls symmetry.

3. Duality. The first theorem establishes condition (i) in the definition of duality.
Theorem 1. supP. G < infP F.
Proof. Using the convention [7] that

if P* = <f>, supp.G = — oo ,

if P = 4>> infp P = + 00 ,

it remains to prove the inequality under the assumption that both programs are feasible.
Let (u, v) e P*, (x, y) t P. Since v > 0 and x > 0, it follows that

— b'v — y'Dv < x'A'v < p'x + x'Cu.
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Since C and D are symmetric and positive semi-definite, the inequalities [2, p. 156]

2y'Dv < y'Dy + v'Dv,

2x'Cu < x'Cx + u'Cu

may be applied to show that

— b'v — \y'Dy — %v'Dv < p'x + %x'Cx + \u'Cu

which yields
G(u, v) = — \v' Dv — \u' Cu — b'v < \y' Dy + ix' Cx + p'x = F(x, y).

This proves the theorem.
A solvable quadratic program is related to a certain linear program. By means of this

correspondence, the duality theorem of linear programming may be employed. The proof
follows that of Dorn in [2].

Lemma. If (x0 , y0) is an optimal solution of (P), then it is an optimal solution of
the linear program (L0):

Minimize f(x, y) = {y'0 D)y + (x'0C)x + p'x (3a)

subject to Dy + Ax > — b (3b)

and x > 0 (3c)

Proof. The constraint set P of program (P) is the same as that in (L0)- Suppose
there exists (zi , yt) t P such that f(xi , yx) — f(x0, ya) < 0. This means

(y'0D)(yi - y0) + (x'QC + p')(xx - x0) <0. (4)

Let 0 < X < 1, and define
x* = (1 — X)x0 + \Xi = x0 + X(x: — x0),

y* = (1 - \)y0 + Xy1 = y0 + X(j/j - y0).

By the convexity of P, (x*, y*) e P. Consider

F(x*, y*) - F(x0, y0) = \[{y'0D){y1 - y0) + (x'0C + p')(xi - z0)]

+ (X2/2)[(?/1 - Vo)'D(y1 - y0) + (xx - x0)'C(xl - x0)]. (5)

It follows from (4) that the right-hand side of (5) can be made negative by
taking sufficiently small positive X. This contradicts the assumption of the optimality of
(x0, y0) in the program (P). Therefore (x0 , ya) must be optimal for (L0).

Theorem 2. If (P) is solvable, then (P*) is solvable, and the extremal values of
F and G are equal.

Proof. Let (x0 , y0) solve (P). By Theorem 1, if there exists (u0 , v0) e P* such that
G(u0, Vo) = F(xo, y0), then (u0 , v0) solves (P*). By the Lemma, (x0, ya) is optimal for
(L0). The duality theorem of linear programming (cf. [1]) states that there exists a
vector v0 such that

— A'vo + Cxo > — p, v0 > 0, VoD = y'oD,
and

— b'v0 = y'0Dy0 + x'0Cx0 + p'x0. (6)
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Notice that (x0 , v0) e P*. By the symmetry of D

v'oDv o = y'0Dv0 = v'0Dy0 = y'0Dy0.

Thus from (6)

F(x0i y0) = \y'0Dy0 + \x'aCx0 + p'x0

= —\y'aDya — \x'0Cx „ — 6'y0

= —iv'oDv o — l^oCzo — 6'y0

= G(x0,v0),

and the proof is complete.
The demonstration of Theorem 2 provides the important
Corollary 1. If (x0 , y0) solves (P), there exists a vector v0 such that (x0 , v0) solves

(P*) and G(x0 , v0) = F(xa , y0). Moreover, Dy0 = Dv0 .
This corollary and the symmetry discussed above yield
Corollary 2. If (u0, v0) solves (P*), there exists a vector x0 such that (x0, v0) solves

(P) and G(u0 , v0) = F(x0, v0). Moreover, Cu0 = Cx0 .
Condition (ii) for duality is now satisfied. A further observation can be made.
Corollary 3. Non-negativity restrictions may be imposed on all the variables in (P)

and (P*) without affecting the question of their solvability.
Condition (iii) is a consequence of
Theorem 3. If (P) is feasible and (P*) is infeasible, then infP F =   00 .
Proof. Let (x, y) t P. The assumption P* = <j> means there exist no pair (u, v)

satisfying

>-A' C v

I oj k
It follows (cf. [6], p. 46) that there exist vectors x* > 0 and y* > 0 such that

— A I

C 0,

(-P', 0)

In particular,

IZ/*J

0

0,

= 1.

Iy* = Ax* > 0, Cx* = 0, p'x* = —1.

With X > 0 it follows that (x + Ax*, y) t P. However,

F(x + Xx*, y) = -X + F(x, y).

Clearly Fix + \x*, y) — °° as X —» + °o.
Again the symmetric result holds.
Corollary 1. If (P*) is feasible and (P) is infeasible, then sup/.. G = + °°.
An immediate consequence of Theorems 1 and 3 and Corollary 1 is
Corollary 2. If either program (P) or (P*) is feasible, its objective function is
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bounded in the direction of extremization if and only if the other problem is feasible.
The duality relation is now fully established.
Theorem 4. (Joint solution). If (P) or (P*) is solvable, there exist vectors x„ and v0

such that (x0 , v0) is an optimal solution for (P) and (P*).
Proof. It is no restriction to assume that (P) is solvable. Let (x0 , y0) solve (P).

By Corollary 1, there exists a vector v0 such that (x0, v0) solves (P*),

G(x0, v0) = F{x0, y0) and Dy0 = Dv0.

From this it follows that (x0 ,v0)tP and G(x0, v0) = F (x0, v0). Hence (x0, v0) solves (P).
Remark. (Complementary slackness). Let (x0 , v0) be a joint solution of (P) and

(P*). Define
s0 = Dv o + Ax0 +6, t0 = —A'vo + Cx0 + p.

It follows that

s'0v0 = 0 and t'0x0 = 0, (7)

for by the hypothesis on (x0 , v0),

SoVo = v'0Dvo + x'0A'v0 + b'v0 > 0, (8a)

t'oXo = — VoAxo + x'oCxo + p'xo > 0, (8b)

iv'0Dv0 + %x'a Cx0 + p'xo = —iv'oDvo — ix'oCxo — b'v0. (9)

From (9) it is clear that s'0v0 + t'0x0 = 0 which, by (8), can happen only if each of the
summands is zero.

In linear programming, the feasibility of both the primal and dual programs implies
the existence of optimal solutions for each of them. It is possible to make this claim for
quadratic programming.

Theorem 5. If (P) and (P*) are feasible, then (P) and (P*) are solvable.
Proof. Since P and P* are nonempty, F is bounded below on P and G is bounded

above on P*. The result of Frank and Wolfe [5, App. i] may be modified to show that G
must attain its supremum (over P*) on P*. The remainder of the proof is an application
of Corollary 2 of Theorem 2.

4. Self-duality. The self-duality presented in [4] requires the notion of equivalence,
particularly since the dual programs considered there are not of the same form. However,
symmetric dual quadratic programs permit a formal type of self-duality which resembles
that for linear programs. The linear program (L0

Minimize q'z
subject to Atf > —q
and z > 0,

where A1 is skew symmetric is clearly self-dual. If the program is feasible, Min q'z = 0.
Indeed, the dual of this program is formally the same program. The analogous statement
for quadratic programming is

Theorem 6. The quadratic program (Pi)

Minimize $(X, Y) = ±Y'C1Y + ±X'C1X' + q'X
subject to CiY + AiX > —q
and X > 0,
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where Ai is skew symmetric and Ci is symmetric positive semi-definite, is self-dual.
Moreover, if (Pi) is feasible, then Min $(X, F) = 0.

Proof. The dual of (Pi) is the program (P*i)

Maximize *(U, V) = -JV'CiF - \U'C,U - q'V
subject to —A[V + CiU > — q
and V > 0.

Since Ai is skew symmetric, (P,) is self-dual. Again by the skew symmetry of Ax ,
X'AyX = 0 for all X. Let (X, Y) t P1 . It follows that

F'C.X > -q'X.
Therefore

S(X, Y) = |Y'C1 Y + §X'C,X + q'X > (F - X)'C1(Y - X) > 0.

The program (Pj) is solvable since <T> is bounded below on Pl . Consequently (J'*) is also
solvable. For all (U, V) t P^ , ^(U, V) < 0. Now let (X0, F0) be a joint solution for (P,)
and (Pt), then 0 < $(X0, F0) = ^(X0 , F0) < 0. The conclusion follows.

A program of the form (Lj) may be obtained as a composite of the

Primal Program (L):
Minimize p'x
subject to Ax > — b

and the Dual Program (L*):

and x > 0

Maximize — b'v
subject to — A'v > — p
and v > 0,

simply by taking

.4. = 0 A
-A' 0

<7 = z =

In a similar manner, the composite of the programs (P) and (P*) yields one of the form
(Pi). The identifications are

Ai = 0 A
-A' 0

Ci D 0

o c
X = F =

and $(X, F) = F(x, y) - G(u, v).
The author wishes to express his gratitude to George B. Dantzig and E. Eisenberg

for helpful suggestions and criticism and to W. S. Dorn for a simplification in the proof
of Theorem 4.
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APPLICATION OF VARIATIONAL PRINCIPLES TO LIMIT ANALYSIS*

BY T. MURA AND S. L. LEE (Civil Engineering Department, Northwestern University)

1. Introduction. The use of variational principles to derive kinematically admissible
velocity fields and statically admissible stress fields in the limit analysis of perfectly
plastic structures [1-6] has been discussed by several investigators [7-13]. The purpose of
this paper is to demonstrate by means of these principles that the safety factor, the
kinematically admissible multiplier and the statically admissible multiplier for a body
made of perfectly plastic material and subjected to given surface traction are actually
extremum values of the same functional under different constraint conditions.

The kinematically admissible multiplier m* is defined by the relation1

wr = k [ (2e;fe;f)1/2 dV/ [ T,v* dS, (1)
J v / J St

where

tit = (v*i + vf,i)/2 in V, (2)

/J S T

= 0 in V, (3)

v? = 0 on Sv, (4)

TiV? dS > 0 (5)

In these equations, V denotes a closed domain bounded by a closed surface S, ST a
portion of S subjected to given surface traction T, while on the remainder Sv the velocities
are prescribed to vanish, e;* the strain rate field associated with the velocity field v*,
and k is the yield limit in simple shear. A velocity field is said to be kinematically ad-
missible if it satisfies (3), (4) and (5).

The statically admissible multiplier is defined as follows: A stress field is said to be
statically admissible if

c<j,i =0 in V, (6)
= m"T, on ST, (7)

*Received October 4, 1962; revised manuscript received March 30, 1963. The research upon which
this paper is based was supported in part by the Advanced Research Projects Agency of the Department
of Defense, through Northwestern Materials Research Center.

'See [1], p. 247.


