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APPLICATION OF VARIATIONAL PRINCIPLES TO LIMIT ANALYSIS*

BY T. MURA AND S. L. LEE (Civil Engineering Department, Northwestern University)

1. Introduction. The use of variational principles to derive kinematically admissible
velocity fields and statically admissible stress fields in the limit analysis of perfectly
plastic structures [1-6] has been discussed by several investigators [7-13]. The purpose of
this paper is to demonstrate by means of these principles that the safety factor, the
kinematically admissible multiplier and the statically admissible multiplier for a body
made of perfectly plastic material and subjected to given surface traction are actually
extremum values of the same functional under different constraint conditions.

The kinematically admissible multiplier m* is defined by the relation1

wr = k [ (2e;fe;f)1/2 dV/ [ T,v* dS, (1)
J v / J St

where

tit = (v*i + vf,i)/2 in V, (2)

/J S T

= 0 in V, (3)

v? = 0 on Sv, (4)

TiV? dS > 0 (5)

In these equations, V denotes a closed domain bounded by a closed surface S, ST a
portion of S subjected to given surface traction T, while on the remainder Sv the velocities
are prescribed to vanish, e;* the strain rate field associated with the velocity field v*,
and k is the yield limit in simple shear. A velocity field is said to be kinematically ad-
missible if it satisfies (3), (4) and (5).

The statically admissible multiplier is defined as follows: A stress field is said to be
statically admissible if

c<j,i =0 in V, (6)
= m"T, on ST, (7)
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= islsl,- - fc2 < 0 in V, (8)
where

S°H = cr°ij - Sti<r°, (9)

<7° = l/3a°kk. (10)

The proportional constant m° defined by (7) is termed the statically admissible multi-
plier.

The ratio s of a generic surface traction at the instant of impending plastic flow to the
given value of the surface traction T, is called the safety factor. It is well known that

m° < s < m* (11)

2. Safety factor. Consider the minimum problem of the functional F^Vi , s,-,] with
independent arguments v< and si(-. The existence of the minimum problem will be proven
later.

Problem I. Minimize

+Vj,i) dV (12)
Jv

with the constraint conditions

/(Si,) = iSijSa - k2 < 0 in V, (13)

(s.'i - + Vj.i) > 0 in V, (14)

for any s'it- such that < 0,

SijVi.j = 0 in V, (15)

Vi = 0 on Sr, (16)

f T.Vi ds — 1. (17)
J St

In order to determine the minimal conditions, the problem is transformed by employing
point-function Lagrangian multipliers <r, 72, , and n and a constant Lagrangian multiplier
m as follows.

Problem II. Extremize

F2[Vi, Si,-, <t, Ri} m, fi, <p] = / s.iKw,,,- + Vi,i) dV
Jv

+ f aSijVitj dV — f RiVi dS—mii T,y, dS — l)
J V J Sv \J S T '

- [ M[/(S„.) + <p2] dV (18)
Jv

with the constraint condition

n > 0. (19)
The point function <p is introduced on account of the inequality of condition (13) and,
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as will be shown later, constraint condition (19) is imposed in order to take into considera-
tion constraint condition (14).

Taking the variation of F2 leads to

■SF2 = f 6s,i|(f,-.i + Vj,i) dV + [ SuiiSVij + dV
J v J V

+ f 5cr6ijVitj dV + f a8ij8vitj dV — f 8Rtt\- dS — f RibVi dS
J v J v ' J Sv J Sv

i( [ T{Vi dS - \) - m I TibVi dS - f 5/x[/(stJ) + <p2} dV
\J S T ' J St Jv

8m\
'St

H— f fx —— dSij dV — f /j,2<pS(p dV (20)
Jv oS{j Jv

Integrating (20) by parts yields the natural conditions

Wi.i + Vi,{) = n in V, (21)

v. > 0,
(sa + S.-jc),,- = 0 in V, (22)

(su + 5titr)n,- = mTi on ST) (23)

(sa + 8ijo)nj = Ri on Sv, (24)

/(•?.,■) + <p2 = 0 in V, (25)

n<p = 0 in V, (26)

S jjVi,) = 0 in V, (27)

Vi = 0 on Sv, (28)

f T;vx = 1. (29)
J S T

Condition (21) is the plastic potential flow law, (22) to (24) are the equilibrium con-
ditions, and (27) to (29) define a kinematically admissible velocity field. Conditions (25)
and (26) define the admissible domain of the stress space, i.e.,

= 0 if M > 0, (30)

/(««) <0 if n = 0. (31)
Obviously, (21) to (29) are the conditions for incipient plastic flow. Condition (24) should
be understood as an equation for determining /i, , the reaction on the boundary, which is
arbitrary. It should be mentioned here that condition (29) is no more restrictive than the
requirement

[ TiVi dS
J S T

> 0.

Setting the integral equal to unity only determines the scale of the otherwise arbitrary
size of the velocity vector. It should also be observed that constraint condition (14) on
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Ft is satisfied by (21) and the fact that the yield surface, /(s,,) = 0, is convex with respect
to the origin of the vector space.

Integrating the functionals by parts in view of (21) to (29), it can be readily shown
that the minimum value of Fi and the extremum value of F2 are equal to m. Therefore
the safety factor can be defined as the minimum of Fi or the extremum value of F2, i.e.,

Min. F\ ~ Ext. F2 = m = s (32)

To prove the existence of the minimum problem for F, , it is sufficient to show that

[ + vf,i) dV > [ SaiiVi.i + Vj,i) dV (33)
J V J V

for an set of v* and s* which satisfy the constraint conditions (13) to (17) and v, and s,,-
are the stationary functions. Since conditions (22) to (29) are applicable to v, and ,

/ Si,•§(«,•,; + Vj,i) dV = / (TijVij dV = / TiiViUj
J v Jv J St

dS
J S T

— ml T,Vi dS = m f T,vf dS = f aaV^n,- dS
J S T J S T * S

= f (Tii.jV? dV + f anvfj dV = [ + w*,) dV (34)
J v J v J V

In view of (14),

(s* ~ Si ,)§(i>?.,- + vf,i) > 0 (35)
Thus, statement (33) is established and the existence of the minimum problem is verified.

3. Kinematically admissible multiplier. It can be shown that a kinematically
admissible velocity field v* and the associated stress field constructed from v* by
means of

sf,- = /ce;f/(if„tt„t)I/2, (36)

where t * is defined by (2), are admissible comparison functions of Problem I. As a
matter of fact, substituting

t>,' = v* / \ Txv* dS, (37)
/ J St

Si, = s* (38)
in (12) yields

Ft = m*, (39)
where m* is as defined by (1). Since the safety factor is the minimum value of Fx , the
following inequality holds:

m* > s, (40)

4. Statically admissible multiplier. In accordance with the maximal minimum
principle of calculus of variations2 another minimum problem may be obtained from

JSee [14], p. 232.
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Problem II for fixed values of the Lagrangian multipliers <r°, R°, m° and n° with additional
constraint conditions as follows.
Problem III. Minimize

F3[«i, Si,] = f saWi.i + v>.>) dV + f a"SijVt,/dV
J v J V

- [ R°v, dS - m°( f dS - l) - [ M°[/(s„) + v] dV (41)
J Sv S T ' J vISV

with constraint conditions

/(s.,) + = 0 in V, (42)

(«.■> ~ s'iJiiVi., + Vj,i) >0 in V, (43)

ior any sj,- such that /(s{,) < 0.
Taking the variation of F3 with respect to v{ leads to

(s.-f + 5fJo-0)., = 0 in V, (44)

(s,-,- + Sii<r°)ni = m°T i on ST, (45)

(sa + <5,,cr0)n,- = R° on Sr. (46)

Integrating (41) by parts in view of (44) to (46) leads to

F3 = m° — [ /[/(«,.,.) + v2] dV (47)
J v

which, in view of (42), simplifies finally into

Min. F3 — m°. (48)

In order to prove that Problem III is a minimum problem, it is sufficient to show that
for any set of arbitrary comparison functions v° and s°,- ,

«?#] > F3[Vi, s,-,], (49)

in which Vi and s,-, are the stationary functions. In view of (47),

Fi[Vi, s,-,] = Fatf, s^]. (50)
Therefore, taking (42) and (43) into consideration,

W, «!,] - F3[v., s,,] = F:y,, «»,.] - F3[v'\, s,-,]

= [ (s% ~ «„)*(»!., + »?.,) dV > 0 (51)
Jv

and (49) holds true.
Problem I may be made up from Problem III by superimposing, on top of (42) and

.(43), the following additional constraint conditions:

SijVij = 0 in V, (52)
Vi = 0 on Sv, (53)

[ TiVidS= 1. (54)
J St
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Since (52) to (54) are not natural conditions of Problem III, they raise the minimum
value of the functional. Hence the minimum of Fx cannot be less than the minimum
value of F3 . In other words,

m° < s (55)

Since conditions (42), (44) and (45) are identical to (6), (7) and (8), m in (55) turns out
to be a statically admissible multiplier.

5. Conclusion. From the foregoing discussions, the statically admissible multiplier
m° can be defined as the minimum value of F3 with the constraint conditions (42) and (43),
or the value of F3 calculated from a statically admissible stress field.

Since a kinematically admissible velocity field satisfies conditions (52) to (54) and
F3 = under these additional constraint conditions, the kinematically admissible multi-
plier to* can be defined as the value of F3 or Fx calculated from a kinematically admissible
velocity field and a stress field with constraint conditions (42) and (43).

The safety factor can be defined as the maximal minimum value of F3 with respect
to the Lagrangian multipliers o°, R° , m° and n°, or the minimum value of F3 or F, with
the constraint conditions (42), (43), (52), (53) and (54). It can also be defined as the
extremum value of F2 with the constraint condition (19).

It should be noted that the foregoing discussions can be extended to the analysis of
anisotropic solids by using the proper /(sif). Cases involving discontinuous velocity
fields can be treated by considering the additional work done on the surface of dis-
continuity.
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