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THE ASSOCIATED ELASTIC PROBLEMS IN DYNAMIC VISCO-ELASTICITY*
BY

L. N. TAO
Illinois Institute of Technology, Chicago, Illinois

Abstract. The paper is concerned with the associated elastic problems of linear
visco-elastic bodies under dynamic conditions. By the introduction of an adjunct prob-
lem and the use of Laplace transforms, an associated elastic problem is established. This
includes the quasi-static study of Lee as a special case. Also, a modification of the ad-
junct problem leads to a second associated elastic problem, which is in agreement with
the correspondence principle.

1. Introduction. In the theory of linear visco-elasticity it is known that for quasi-
static cases, i.e. cases with negligible inertia effects, the analysis can be simplified through
the use of the solutions of associated elastic problems. Alfrey [1] has demonstrated this
for an incompressible visco-elastic body with prescribed surface tractions. Tsien [2]
has extended this method to compressible materials with constant Poisson's ratios.
However, in general, the Poisson's ratio of a visco-elastic material is time-dependent.
This fact restricts the applicability of this kind of approach. Lee [3] has removed this
limitation and has shown that for visco-elastic bodies obeying the general linear iso-
tropic stress-strain laws, an associated elastic problem can be established by the use of
Laplace transforms. The results available in the extensive literature on the theory of
elasticity may therefore be utilized in linear visco-elasticity. This method has been
successfully applied to a number of visco-elastic problems.1 However, the method has
not been applied successfully to dynamic problems of visco-elasticity, such as waves
and vibrations. An attempt has been made by Read [7], who uses the Fourier transform
to discuss the general dynamic problem. This leads to an associated elastic problem
with body forces proportional to the displacements. This type of problem is uncommon
in the theory of elasticity. Accordingly, the aim of utilizing solutions from the theory of
elasticity cannot be achieved satisfactorily. This point has been stressed by Lee [4].

On the other hand, Bland [6] has given correspondence principles for both quasi-
static and dynamic problems. The correspondence principle in the quasi-static case was
established and based on the associated elastic problem by Lee [3]. A similar situation
does not exist for the dynamic case since no dynamic counterpart to the associated
elastic problem has yet been found.

The purpose of this paper is first to show that for a visco-elastic body obeying the
general linear isotropic stress-strain laws and under dynamic conditions, associated
elastic problems of dynamic nature may be found. This is accomplished by introducing
an adjunct set of equations. This establishment of associated elastic problems contributes
to the understanding of the correspondence principle under dynamic conditions. Further-
more, both associated elastic problems and correspondence principles fail to exist when
the stresses and/or displacements are initially non-zero. Using the adjunct problem, the
visco-elastic problem with non-vanishing initial conditions can be analyzed with time-
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independent boundary conditions. This may, to a certain extent, simplify the mathe-
matical analysis.

In the next section, we will first introduce and discuss the adjunct problems. Based on
the first adjunct problem, the first associated elastic problem is then found. As a special
case, this associated elastic problem is in complete agreement with the associated elastic
problem for the quasi-static case suggested by Lee [3], In this case, the adjunct problem
is merely the original visco-elastic problem itself.

In order to present a better understanding of the correspondence principle, a second
associated elastic problem, which is a modification of the first associated elastic problem,
will be offered. This readily gives the direct relation of the correspondence principle and
the associated elastic problem. In general, the choice of the two proposed adjunct prob-
lems, and hence of the associated elastic problems, depends upon the prescribed boundary
conditions and body forces.

2. The adjunct problem. Let us consider a material satisfying the general isotropic
linear visco-elastic laws:

P(Dt)su = Q{D,)eii , ^ ^

P'{Dt)cu = Q'(D,)tii ,

where P, Q, P' and Q' are linear operators of D, = d/dt, <ru and e,-,- are the stress and
strain tensors, and sand e,, their deviators defined by

sa — "~<i ~ §<7**5.1 , 2)

@ij ' ^ i J 3 tkk&ij j

where Stj is the Kronecker delta. These linear visco-elastic laws have been fully discussed
in [4, 5, 6]. Let the body be subject to prescribed body forces fi{x, t) per unit volume,2
surface tractions Tt(x, t) on the surface S, , and/or surface displacements W{(x, t) on
the surface S2 as they may occur in the theory of elasticity. The visco-elastic problem is
completely described by the equations of motion

aa,i + 1i(xj t) — pD2,Ui (2.3)

and the strain-displacement relations

«,i = («;,,• + Uj, ,)/2 (2.4)

subject to the boundary conditions

= T,(x, t) on <S\ ,

Ui — W,(x, t) on S2 ,

and proper initial conditions.

(2-5)

Denote the Laplace transform operator with respect to time t by L, and the trans-
formed functions by a superscript L on the corresponding functions. Taking the Laplace
transforms of the above equations, we then have the visco-elastic problem described by

2We abbreviate/i(xi, xi, x3l t) bjr/i(x, t).
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P(j>)s,Lj + P0(x, p) = Q(p)e,Li + Q0(x, p),

P'($)*■< + P'o(x, p) = Q\p)etLt + Q'0(x, p),

vfi.i + fLi(x, p) = p\p2uLi + u°i(x, p)], _ ^

u, = («?., + uf.t)/ 2,
<r,X = p) on <S, ,

uLi = WLi(x, p) on S2 ,

where P0 , Q0 , P'o , Q'o and uc' have obvious meanings and are specified by the initial
conditions and the linear operators P, Q, P' and Q'.

Now let us consider an adjunct problem: Denote the stress tensors by Pu(x, t, r), the
strain tensors by yi,-(x, t, r), and their deviators by ctu{x, t, t) and t, r). All of these
are functions of the coordinates , the time t, and a new variable r. Suppose the material
obeys a new set of stress-strain laws,

P(DT)au = Q{D,)i]ii , ^ „

P'(Dr)pit = Q\DT)yii ,

where Dr = d/dr. Let the body be subject to the prescribed body forces f,(x, t), surface
tractions Ti(x, r) on Si , and surface displacements W, (x, r) on S2 . All of these pre-
scribed functions are the previous ones with direct replacements of the time t by the
new variable t. The additional equations of the adjunct problem are

fia.i + fi(x, t) = pD2,Vi ,

7if = + Vj,i)/2, ^ ^

0i,n,- = T<(x, r) on St ,

v> = Wi(x, t) on S2 .

Now let us take the double Laplace transforms with respect to r and t, and denote the
transforms by a double star on the functions, We then have

P(p)af* +^Po(x, p) = Q(p)V** + ± Q0(x, p),

P'(p)Pt* + \ P'0(x, p) = Q'tpht* + i Q'0(x, p),
r r

P**i + - f>(x, p) = p ?vf* + - u°(x, p)p . V (2-9)
7?i* = (f Vi + vf.D/2,

~ TLi(x, p) on Si ,

v** = ^ WLi(x, p) on S2 .

Clearly, by comparison of this set of equations with the set of equations (2.6), we must
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have

uLi = -pv f*,

ff*i = Pfitr, *L, = pyl*, (210)

»u = P<x**, efi = PV**-

Since vf* is the double Laplace transform of v{ , the generalized convolution theorem
[8] shows that vf* is also the single Laplace transform of

f Vi(x, t — r, t) (It (2.11)
Jo

with respect to t. Hence pv** must be the Laplace transform L, of

D, f Vi(x, t — t, t) dr. (2-12)
Jo

This shows that

Ui — D, f Vi(x, t — t, t) dr. (2-13)
Jo

Using the substitution \ = t — r, we also have

^ = D, f Vi(x, X, t — X) d\. (2.14)
«/o

Similarly, we have

<rn = Dt / Pn(x, t — t, t) dr,
Jo

en = D, / Ta(x, t ~ T, t) dr,
Jo

S<i = D, / <Xij{x, t — r, t) dr,
Jo

en = D, / Vn(x, t — t, t) dr.
Jo

(2.15)

Therefore, the original visco-elastic problem is directly related to the adjunct prob-
lem. The latter has time-independent boundary conditions, and hence is easier to handle.
This approach may be used when the associated elastic problem discussed in the next two
sections does not exist.

3. The first associated elastic problem. We now proceed to establish the first
associated elastic problem. This can only be accomplished when the initial stresses and/or
displacements are identically zero. This requirement is also imposed by Lee [3] in the
quasi-static case and by Bland [6] in his correspondence principle. Since most physical
problems originate from a state of rest, the requirement is not a serious one. The vanish-
ing initial conditions readily imply that P0 , Q0 , P'o , Q'o , and u° of the last section are
identically zero.

Let us take the single Laplace transforms with respect to r, and denote the transforms
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by a single star on the functions. We then have

P(p)a* = Q('P)v* ,

P'(pm = Q'(v)y*, ,
Pti.i + fifr, V) = pD2tv*i , ^ ^

y* = (vf.i + vli)/2,
= T'l{x, p) on &, ,

v* = WLi(x, p) on S2 .

With proper modifications of the material constants and the boundary conditions as
functions of the parameter p, we may readily see that this is an elastic problem of dy-
namic nature. This will be called the first associated elastic problem. Therefore, the
solutions of the adjunct problem are the inverse Laplace transforms with respect to r,
denoted as L'1, of the associated elastic problem with proper modifications of material
constants and boundary conditions. With known solutions of the adjunct problem, those
of the original visco-elastic problem may be found through Eqs. (2.13) and (2.15).
Hence we have the first theorem which may be symbolically stated as follows:

[~visco-elastic"] _ n [' ^ ["first associated elastic problem"]
problem J f0 dT [_ with prescribed , TL{ , W\ • (3-2)

It is generally understood that the term quasi-static case means that the inertia effects
can be neglected in the equations of motion. This is equivalent to the statement that the
density p is zero. Let us drop the inertia terms of the adjunct problem. We find that the
displacement vectors, stress and strain tensors, and their deviators are time-independent,
since both prescribed boundary conditions and governing equations are independent of the
time t. Then, from Eqs. (2.13) and (2.14), we have

U{(x, t) = D, / Vi(x, 0, r) dr
Jo

= D, f Vi(x, 0) d\ = Vi(x, t). (3.3)
Jo

This shows that Uiix, t) and y,(rc, 0, t) are identical in the quasi-static case. In other
words, the adjunct problem is the visco-elastic problem itself, as used by Lee [3].

4. The second associated elastic problem. In the first associated elastic problem
discussed in the last section, the boundary conditions and body forces are independent of
t. This may limit the availability of information in the theory of elasticity. A modified
form is suggested in this section. Consider a second adjunct problem described by

= Q(Dr)Vii ,

P'(DT)pu = Q'{DT)yu ,

+ ii(x, t) = PD]vi , -4 ^

7 a = (Vi,j + Vj,<)/2,
/3i,n,- = Ti(x, t) on ,

Vi = Wi{x, t) on S2 ■
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It is noted that in this set of adjunct equations the prescribed functions, /, , T, and W, ,
are functions of the coordinates Xi and the time t, instead of the coordinates xt and the
variable t as suggested in the first adjunct problem.

The double Laplace transforms L,+r of this set of equations are the same as those of
Eqs. (2.9). Hence, the visco-elastic solutions are still related to those of the second
adjunct problem by Eqs. (2.13) and (2.15). But the single Laplace transforms Lr of
Eqs. (4.1) lead to

P(p)a,*j = Q(p)v* ,

P'(p)P* = Q'(p)y* ,

18*.i + ^ /<(z, t) = PD2,v% ,

y*i = ("*„■ + vU/2, (4'2)

P*ni = ^ Ti(x, t) on & ,

v* = I W,(x, t) on S2 .

Clearly, this set of equations may be considered as an elastic problem with time-de-
pendent prescribed body forces /, , surface tractions T, and surface displacements W, .
This problem will be called the second associated elastic problem. This set of equations,
shows that the Laplace transforms of the solutions of the second adjunct problem are the
corresponding solutions of the second associated elastic problem divided by the param-
eter p,

pv* = v' ,

PP* = P'a , P7* = y'a , (4-3)

PC*-H &ij j PVii Vii >

where the superscript e denotes the second associated elastic problem. Since vf* is the
Laplace transform of v* and u\ = pv**, we conclude that

Similarly, we have

U{ = ^{pLM/p}] = L71\L,[v']}. (4.4)

en = L^{Lt\p'u]}, ta■ = ^ ^

s,-,- = L7ML, [a*,]}, e„ =

Therefore the visco-elastic solutions are the inverse Laplace transforms of the Laplace
transforms of the corresponding solutions in the second associated elastic problem.
Symbolically, the second theorem is

[visco-elastic"1 _ ..J f~second associated elastic problem~|1
problem J ' \ with prescribed /, , , W, J/" (4.6)
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Using an alternative form,

, visco-elasticl _ T Tsecond associated elastic problem |
problem J '|_ with prescribed /, , T{ , IF, J' (4.7)

we have obtained the correspondence principle [6].
In the case of a quasi-static problem, the second associated elastic problem, which

has time-dependent body forces and boundary conditions, is unnecessary. We may
observe that the Laplace transform L, of the second associated elastic problem gives the
first problem. This readily relates these two associated elastic problems.

5. Hereditary representation of visco-elastic materials. In the previous sections,
we have used the stress-strain laws in terms of differential operators. It is known that for
visco-elastic materials the hereditary integrals of stress-strain laws are also frequently
used. Since these two forms are equivalent, no detail discussions are necessary. Dis-
cussion of a simple one-dimensional case is sufficient to make this point clear. The
stress-strain relation may be expressed by

[' J(t - X)
J — CO

dX = e(t)
or (5.1)

rfe(X)
r(t) = / _ E(t - X) ̂  d\,

where J (t) is the creep compliance and E(t) the relaxation modulus. This suggests that
in either adjunct problem the stress-strain relation should be replaced by

J{ r ~ X) d\ = y(t, t)
or (5.2)/:

0(t, t) = J E(t — X)
OA

The Laplace transforms Lr of Eqs. (5.2) are

pJ*(p)/3* = y*,

0* = pE*(p)y*.
These are the proper stress-strain relations for the associated elastic problems.

6. Discussion. In this paper we have established associated elastic problems in
dynamic visco-elasticity. These associated elastic problems may be considered as
generalizations of those of quasi-static viscoelastic problems [3]. This work also shows
that there exists a direct tie between the associated elastic problems and the corre-
spondence principles. Though the present discussion is restricted to the use of Laplace
transforms, the same conclusions can be achieved by means of other integral transforms,
such as the one-sided Fourier transform used in the correspondence principle of Bland [6],

It has been pointed out by Lee [3] that in quasi-static problems the inverse transform
of the associated elastic problem can be easily completed by means of partial fractions.
In dynamic problems even with the corresponding associated elastic problem available,
the inverse transform may not be as simple as in the quasi-static cases. This complexity
arises due to the fact that branch points will generally exist in the transformed plane.

When the stresses and/or displacements are initially non-zero, such as problems of
unloading, the associated elastic problem fails to exist. In this case, it seems that the
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first adjunct problem, Equations (2.7) and (2.9), may be used for stress analysis. The
main advantages here are that the boundary conditions are time-independent. This is
analogous to Duhamel's treatment of the diffusion equation.
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