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PLASTIC PLATE THEORY*

By PHILIP G. HODGE, JR., (Illinois Institute of Technology, Chicago, Illinois)

Abstract. It is shown that the governing equations for perfectly plastic flow of
plates are generally elliptic, the only exceptions being certain piecewise linear yield
conditions and corners of the yield curve.

Rotationally symmetric plastic plate problems were first investigated by Hopkins
and Prager [1] in 1953 and have been extensively treated since then (see, for instance,
[2] or [3] for textbook accounts). The general plastic plate problem has been treated
theoretically by Hopkins [4] for a particular yield condition, a particular simple problem
has been solved by Lerner and Prager [5], and some limit analysis bounds on yield-
point loads have been found by Prager and Hodge [6] and improved on by Shull and
Hu [7]. However, the complexity of the general problem is such that numerical methods
must almost certainly be used if further solutions are to be obtained. An obvious pre-
requisite of the application of numerical methods is a determination of the type of
equations which govern the problem. The present note shows that except for certain
special yield conditions, the equations are fully elliptic.

The governing equations for a plastic plate are the equilibrium equations

MXiX + Mxy,y = VX , MXVtX + My,y = Vy , (la)

VX.X + Vy.y = "P. (lb)

the yield conditionf

F(MX , Mxv , My) = 0, (2)
and the flow rule

—w,xx = X dF/dMx , —w.vv = ^ dF/dMy ,
(S)

— W,Xy = |X dF/dMXy .

Here Mx , Mxy , and Mv are bending moments per unit length, Vx and Vv are shear
forces per unit length, w is the velocity, X is a non-negative scalar unknown, and a comma
preceding a subscript indicates partial differentiation with respect to the following
subscripts.

The shear force may be eliminated by the introduction of a "shear potential" de-
fined by

v. = *.,-*/ p dx, Vy = -ijp dy, (4)

whence Eq. (lb) is satisfied identically and (la) becomes

Mx,x + Mxy,y - [ P dx,
(5)

Mxy,x + Myy.y 4" ^ , I = _ 2 ^ P dy.

*Received July 26, 1963. This investigation was supported by the Office of Naval Research.
fSingular yield conditions and associated flow rules will be considered later.
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Next, we introduce new variables defined by

Mx = M0(to + x cos 20), My = M0(u — x cos 20),

Mxy = M0x sin 29,

where M0 is the uniaxial yield moment, co and x the dimensionless sum and difference
of the principal moments, and 0 the inclination of the principal moments to the co-
ordinate axes. For an isotropic material, the yield condition (2) can then be written

F(MX , Mxv , Mv) = x ~ K«) = 0. (7)

Substitution of (6) and (7) into the equilibrium equations (5) and flow law (3) then
leads to

(1 + /' cos 20)co,x + (/' sin 20)co,„ — (2/sin 26)6,x + (2/ cos 20)0,„ — <fi,v = px

(/' sin 26)w,x + (1 — /' cos 20)co.v + (2/ cos 20)0,x + (2/ sin 20)0,„ + <f>,x =

w.xx = m(/' — cos 20), w,„„ = n(j' + cos 20),

= —n sin 20,
where

/' = c///riw, m = X/2M0 , ^ = $/M0 ,

= _2kfPdx' P' — 2wjpdy-

(8)

(9)

(10)

(11)

Finally, we eliminate w from (9) to obtain the two equations

/'V* ~ (2 sin 26)6,x + (2 cos 20)0,„ + (/' + cos 20)A,I + (sin 20)A,„ = 0,

/"co., + (2 cos 20)0,x + (2 sin 20)0,„ + (sin 26)A,X + (/' — cos 20)A.„ = 0,

where A = log m-
Equations (8) and (11) are a set of four quasilinear first order equations for co, 0, </>,

and A. We shall show that they are of fully elliptic type except for certain special yield
conditions by showing that their characteristics are all imaginary. Since the type of a
set of equations is independent of the choice of coordinate axes, we may first simplify
the equations by taking 0 = 0, corresponding to a choice of principal directions as
coordinate axes. The characteristic curves are then defined by the vanishing of the
eight by eight determinant

1+/' 0 0 2/ 0-1 0 0

0 1 - /' 2/ 0 1 0 0 0

/" 0 0 2 0 0 1 + /' 0

0 /" 2 0 0 0 0 -(1 - /')
dx dy 0 0 0 0 0 0
0 0 dx dy 0 0 0 0

0 0 0 0 dx dy 0 0
0 0 0 0 0 0 dx dy

(12)
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Elementary manipulation shows that (12) is equivalent to

(i + rfidy/dxY - 2(2//" + r - my/dx)2 + (1 - /')2 = 0 (13)
If the characteristics are to be real, then the roots of (13), considered as a quadratic

equation in (dy/dx)2 must be real and positive. They will be real if

4//"(//" + r - 1) > 0. (14)
The yield curve must be convex, hence either it is piecewise linear or

11" < 0. (15)
Leaving the linear yield condition for later consideration, we see that (14) becomes

if" + /'2 - l < 0 (16)
as a necessary condition for real characteristics.

It is evident from (13) that both roots are of the same sign and that a necessary
condition for them to be positive is that

211" + 1'2 ~ 1 > 0. (17)
However, in view of (15), (17) is incompatible with (16) so that dy/dx is never real and
the equations are elliptic.

For a piecewise linear yield condition

/ = aco b (18)

and the two roots of (13) coincide at

(I)' - Iff «•»
Thus, if | a | < 1, the equations are elliptic; if | a | > 1, they have two real and distinct
double characteristics; and if | a | = 1, they have a single quadruple characteristic.

Finally, we consider a corner of the yield curve where /' is not uniquely defined. Let

x = /i(«>), x = m (20)
be the equations of the two sides which form the corner. Equations (20) uniquely de-
termine co = w0 , x = Xo so that (8) becomes

— (2xo sin 26)9,x + (2x0 cos 20)0,„ — <£,„ = px , ^

(2xo cos 20)0,x + (2xo sin 20)0,„ + <t>,x = p„ .

Equations (21) are a pair of equations for 0 and <j> whose characteristics are the real
curves

dy/dx = tan 0, dy/dx = —cot 0, (22)

i.e., the lines of principal direction. The flow law (9) for a corner must be replaced by

W,xt = Mi(/i — COS 20) + n2(J'2 — cos 20),

w.w = ViUl + cos 20) + m2(/2 + cos 20), (23)

w.xv = ~(Ml + Ms) sin 20.
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Elimination of Hi and n2 from (23) yields the equation

w,xx — 2 cot 26w,ty — w.yy = 0, (24)

whose characteristics are again (22). Thus, in this case also there are two real distinct
double characteristics for the problem.

An exception to the preceding paragraph occurs when %o = 0. In this case the two
principal moments are equal so that d is not defined and, in fact, any curve may be
considered a characteristic.

For the particular case of the Tresca yield condition of maximum shearing stress,
it may readily be verified that the results obtained above for piecewise linear yield
curves and for corners on the yield curve agree with the conclusions previously reached
by Hopkins [4] by a somewhat different line of reasoning.
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