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THE MATRIX OF A TRANSFORMERLESS NETWORK*

BY

AARON FIALKOW
Polytechnic Institute of Brooklyn

1. Introduction. The electric networks under consideration in this paper are
bilateral, lumped, passive networks containing resistance, capacitance and self-inductance
but no transformers. As is well known, the theory of these networks may be based
upon their nodal admittance matrices, submatrices and their determinants. In Sects.
2-4, this matrix algebra is developed. For the cofactor A12 which occurs in the various
transfer functions, the known non-negativity of its coefficients is sharpened in Sect. 5.
A number of examples involving surplus factors occur in Sect. 6. In particular, it is
shown that triplets of admittance functions Fn , Y12, F22 exist which can be synthesized
as grounded RC two-ports only after the introduction of surplus factors. The last section
examines the possibility of negative coefficients in A12/(s + a) when s + a is a surplus
factor of F„ , F12 , F22 and derives characteristic properties of the cofactor AU22 for
this occurrence. This result indicates the existence either of additional realizability con-
ditions or of a A12/(s + a), (s + a a common factor as above), containing some negative
coefficients.

2. Cofactors of the network determinant. Consider a general RLC transformerless
network and analyze it on a nodal basis. The nodes are identified so that each branch
consists of an R, L and C in parallel. Hence the admittance yit (i ^ j) of the branch
between nodes i and j is of the form a + bs + c/s where a > 0, b > 0, c > 0, and, of
course, yu = yfi . We also write**

Vii Uii I (2.1)
1-0

where t + 1 is the total number of nodes. We introduce the notation

(m) = Vu , (if) = -Viitt ^ j) (2.2)
and write (2.1) as

E di) = 0. (2.3)
7-0

Let Ii be the current impressed by the driving sources upon node i and let E{ be
the voltage from any fixed node taken as reference node to node i. Then, using Kirchoff's
laws, the equations of the nodal system may be written as

h = £, ME, (2.4)
  i-0

*Reeeived July 5, 1963; revised manuscript received Aug. 5, 1963. The results presented here were
obtained in the course of research sponsored by the U. S. Army Research Office (Durham) under Grant
DA-ARO (D)-31-124-G273.

**Throughout this paper indices have the following ranges: h, i, j, k, I: 0, 1, 2, • • •, t; p, q, r, u, v:
1, 2, • • •, t; w: 2, 3, • • •, <; a, (3, y, S, f: 3, 4, • • •, t.

The ranges of other indices are indicated when they appear. Each equation such as (2.1) is valid
for all values in the range of the free index; that is, for i = 0, 1, 2, • • t.
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after reference to (2.1) and (2.2). These equations are not independent since the sum
of the right members as well as of the left members of all t + 1 equations is zero. Further-
more, one of the voltages Ej does not actually appear in (2.4), since if node k is the
reference node then Ek = 0.

The network determinant D is the coefficient determinant in (2.4) D = | (ij) |.
We also write Dif for the cofactor of (ij) in D, Diikl for the cofactor of (Id) in Z),, , and
use an analogous notation for further iterated cofactors of D. It follows from (2.3)
that D = 0. Also, writing A for Z)00 ,

A = | (pq) |. (2.5)

If the last t — 1 columns of A are added to the first column and use is made of (2.3),
the transformed determinant is Dal . Consequently D00 = D01 . Interchanging the
roles of nodes 0, 1, we obtain DX1 = Dw . Hence, using the symmetry of the ija in i, j,
A = D00 = Dio = Dn . Similarly D00 = Dv0 = Dvv = Dra = D„ . This proves that

A = Dh . (2.6)
Relative to the reference node k, the open circuit input impedance Zu (between

nodes k and i) and transfer impedance Zu are defined by

E■ E■y   i y   7   1A i i t t ^ t j " /» j
i i

subject to the constraint that all independent driving currents other than I, are zero.
Similarly the short circuit admittance u)Ya (relative to node j) and transfer admittance
Fa are defined by

V - Ll. v _ y _ Zi_
('') * E • 1 11 E

subject to the above constraint and also Ej = 0. It follows readily from these definitions
and the network equations (2.4) that

rj ry klei iry •*-'kk%% ry ry
— n , &ii ~ Aji —

(2.7)
r) f J1 7~)

^kk 1Jkk

y   Dkki i y   y   Dkki i
(i) it 7~\ f * ij /* T\

Ukkiiii L'kkiijj

Here lc is the reference node and Ik is the dependent current (equal to —It in this case).
If node k is taken to be node 0, since A = D00 , (2.7) yields the familiar equations

y __ App y   7 __ Apq^VV A QV A »

(2.8)
Y = ^QQ V = V = ^PQ(a) vv * ua 1 av *

Aj>pqq *-*ppaa

Examination of the structure of proves that it is the A of the network after
identification or short circuiting of nodes o and p (Analytically, let yp0 = co). Similarly
Apvta is the A of the network after identification of nodes o, p, q, and analogous results
hold for higher iterated cofactors. These remarks are verified by (2.8) which shows that
if nodes o and q are short circuited then the resulting Zvv is the reciprocal of <t)F„ ,
in accordance with their definitions.
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The iterated cofactors of D are not independent. Thus

£>0012 + £> 1

-(21) (23) ••• (20
-(31) (33) ••• (3 £) +

-(20) (23) ••• (20
-(30) (33) ••• (30

-(<0) (/3) ••• (tt)-(/l) (tS) ■■■ (tt)
-[(21) + (20)] (23) ••• (20
-[(31) + (30)] (33) ••• (30

— [(«) + (»)] «3) ••• (tt)
If all the columns except the first are subtracted from the first column and use is made
of (2.3), we obtain D00II = ■£^0012 + -£>1102 or

An = Ai2 + £>1102 • (2.9)

More generally,

Dm,- = Diijk + £>,,-,* . (2.10)
Of course, D(ijk = Diik, . As a simple application of (2.10), we note that

Doom + £>0000 — 2Doopa — App + A5<i — 2A„ = Dppaq . (2.11)

It follows from (2.10) and (2.7) that Zpv + ZQQ — 2ZM equals the input impedance
between nodes p and q. There is a similar interpretation for Yvv + Yaq + 2 Yvq .

The proof of (2.10) may be generalized to apply to higher iterated cofactors of £>.
In this way, we establish

£>i i iikk = £>iiikl + £>iiii.I + Dkkiij j (2.12)

and analogous results for higher iterated cofactors.
Finally, we note a result which is true for the iterated cofactors of any determinant

and does not depend upon the special structure of £>. Let Mim • • • be the minor obtained
by deleting rows i, k, • • • and columns j, I, ■ from D and make the unessential assump-
tion k > i. Then, by definition, £>„• = ( —1 )i+iMiitDim = (-l),+'(-Q"",>+l*. Mim ,
where lx = I — 1 if I > j and li = I if I < j. Similarly Dki = ( — l)k+' Mkj , Dkiil =
(— l)t+'(— 1)'M' Mijki . Comparison of the above equations leads to

■D./M — £>*„•, • (2.13)

Similarly, for an interchange of two column indices,

£>tiki = Dtw • (2-14)

Thus, in an iterated cofactor of any determinant, the interchange of two row (or column)
indices changes the sign of the cofactor.

3. The network matrix. The network admittance matrix || (ij) || has rank less
than t + 1, since its determinant £> is zero. In consequence of (2.6), its rank equals
that of the admittance matrix F defined by

Y = ||(P3)||. (3.1)
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If G, C, T denote the corresponding matrices of conductance, capacitance, and inverse
inductance respectively then the admittance matrix may be written

F = G + sC + - T. (3.2)s

Let us choose any one of the matrices on the right side of (3.2), say C, and consider
the quadratic form

t t
F = Cvt^l ~ 2 GPQxvxa ,

p-l p,a-l
Vt*Q

whose matrix is C. According to (2.1), F may be written as

F = £ Cpox\ + £ CPQ(xv - xQ)\ (3.3)
P-1 Q>1>

Since the Cp0, CPQ are all non-negative, it follows that F is a positive semi-definite form.
Hence C is a positive semi-definite matrix. The same result* also holds for the matrices
G and T.

Let us now consider the rank of C. The indices 1, 2, • • • , t may be separated into
sets (pi , Pn , • ■ • , Pit), (?i , q2 , • • • , qtJ, • • • in accordance with the following rules:

(i) For any indices p, q belonging to different sets, Cvq = 0;
(ii) For any pair of indices px , p2 belonging to the same set, either CP1P, ̂ 0 or there

exists a chain of indices px, pa, pb, ■ • •, p,, p2 such that CVIP. ̂  0, CPaPt ̂  0, • • •, Cpfp,^0.
Let Cv be the submatrix of C having rows and columns pi , p2 , • • • , ptl and let

Fp be the corresponding quadratic form. Here Cp is the capacitance matrix of a network
Np comprising nodes Pi , p2 , • • • , ptl and 0, where according to (ii), Pi , p2 , ■ • • Pt%
constitute a capacitance connected network. Also Fp is that part of F which contains
the variables xpi , xp,, • • • , xpti only. Now the rank of CP is equal to the number of inde-
pendent variables in FP . Also, from (ii), the number of independent variables (xPa — xvl)
among the terms like CVIV,(xvi — xp,)2 is tx — 1 since all these terms of F„ equal zero
if and only if xpt = = • • • = xpii . If FP also contains at least one term Cpox2p , then
xp is an additional independent variable. Hence the rank of Cp equals h or h — 1, ac-
cording as the reference node 0 is capacitance connected or not to the network of the
remaining nodes Pi , p2 , • • • , ptl ■

Since, in accordance with (i), the Cva are all zero, the rank of C is equal to the sum
of the ranks of the n constituent submatrices CP , Ca , • ■ • . The corresponding n net-
works Nv , Na , • • • are not capacitance connected with each other except, possibly,
through the common reference node 0. This proves the result that the rank of C equals
t + 1 — n. A similar conclusion obtains for G and r. More generally, the rank of the
network admittance matrix equals the difference between the total number oj nodes in the net-
work and the minimum number of connected subnetworks composing it. In particular,
the rank of the admittance matrix of a (t + 1 )-node network is t if and only if the network
is connected.

*This familiar theorem is usually not proved but simply assumed after reference to extraneous
"energy" considerations. It is proved rigorously in [4, pp. 352-354], using ideas from linear graph theory.
That || Zvq || and II Yrq || are positive real matrices follows readily from this result [4, pp. 355-356,
377-379].
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4. Expansions of the Apa. The determinant Ai2 is given by

A12 = (-1)
y21 2/23 * * * 2/21

2/31 2/33 * * * Vzt

Vti ytz '* * yn

(4.1)

where all diagonal elements except y2i are defined by (2.1). Expanding (4.1) according
to elements of the first column, we obtain

t
Al2 = ( 2/i»l)Al2tol

w = 2

or, using (2.14),
t

A12 = 2/i»lAnw2- (4.2)
to =2

Now each Aua2 (a > 2) may be expanded according to the elements of its first row.
This gives

An0,2 — ( 2/20)Ana22/s
0-3

or, using (2.13),
t

All a2 = 23 y2fi^l\22afi •
0=3

Substitution in (4.2) yields the Cauchy expansion
t

^12 == 2/21^1122 ~t~ 23 yaiy2^^1122afi • (4.3)
a, 0=3

In a similar manner, we may derive
t

All = 2/22A1122 ya2y2(3^1122a0 »
a,0=3

f

^22 = 2/11^1122 23 yaiyipAu22ap •

(4.4)

If (4.3) and (4.4) are divided by A1122 and use is made of (2.8), these equations may be
written as

■^12 — 2/21 ~t~ 23 2/al2/2/3(12)-2'a/3 >
a.0=3

t

1^11 = 2/22 23 ya2y2p(l2)ZCtp > (4.5)
a ,0=3

t

Y22 = 2/u 23 2/al2/l0(12)^a0 »
a,0=3

where <i2)Za/5 is the value of Za/3 when nodes 1 and 2 are short circuited to node 0.
5. The coefficient relations. Every iterated cofactor of the form Dhhii...iiki (k 9^ I)

may also be written similar to (4.1) by bringing the element — yki to the upper left
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hand corner and consequently has those properties of A12 which only depend upon
its expression (4.1). Now all the An„2 (<* > 2) in (4.2) have the same structure as A12 .
Also, since An is the value of A after identification of nodes 0 and 1, it follows from (2.9)
that Ah22 may be written as a sum of determinants like A12 . (Otherwise, this last follows
directly from (2.12)). Hence (4.2) shows that A12 may be written as a sum of products
of similar determinants of lower order and the ywl . Repeating this process for each
determinant of lower order until order one is attained, we prove the following coefficient
condition first stated in [1, pp. 124-125]: A12 is a multilinear form in the yu (i 5* j)
with non-negative coefficients. It follows at once from this result and (2.9) that Au and
An — A12 are each multilinear forms in the y(i (i ^ j) with non-negative coefficients.

These results are true even if and yH are unequal. However, in the present
case, ya = y^ = a + 6s + c/s, a > 0, b > 0, c > 0. Hence the preceding results may
be stated in the form [1, 2]: For an RLC network* without transformers, s'~1Al2 and
sl_1(An — Ai2) are each polynomials in s with non-negative coefficients.

We now investigate whether any of the coefficients in these polynomials may actually
be zero. Let N be the given RLC network having the structure shown in Fig. 1. Here

Fig. 1.

node 0 is shown explicitly and each block represents an internally connected network.
Write 0N for the network with node 0 deleted and all the yv0 set equal to zero and write
„A, 0Aoa for the values of A, Apa respectively when all the yr0 = 0. We first prove

Lemma 5.1. If 0N is a connected network, then for any nodes** p, q, u, v in it, s'-1 Ava
and s'-1 A„, have a power of s in common.

We note that 0A is the network determinant D of „N so that (2.6) holds. Hence
s'"1 „Am = si_1 0A„„ = M, where M is a polynomial in s with non-negative coefficients.
According to Sect. 3, the rank of the network admittance matrix of 0N equals t — 1 so
that M ^ 0. Now Apa , A„„ may be written

s' 'Ap, = s' 1 oApa + fpa — M + fpq

s' 'A,, = s' 1 „A„» + /„„ = M + fuv

where fpa , /„„ are polynomials with non-negative coefficients each term of which con-
tains at least one yr0 as a factor. Hence s!_1ABa and s'_1A„, have the polynomial M
in common.

We now prove
Lemma 5.2. Let node v not be connected to node u and let nodesf p, q be connected

to node u in 0N. Then A„„ must be zero and s'-1AUI, , s'_1A„a are zero or have a power of
s in common.

*If the network is an RC network, the factor s'_1 may be deleted.
**These nodes need not be distinct.
fThe nodes p, q need not be distinct.
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The determinant A may be partitioned in accordance with the separate blocks
A, B, ■ • ■ , II of N. Then A has the structure

O

O A,

where Aa , • • • , AH are the A's of the blocks A, • ■ ■ , H each augmented by node 0.
Clearly, if u and v are chosen from different blocks, Au„ = 0, proving the first part of
the lemma. We now consider various possibilities, noting that in Fig. 1 blocks A ••• E
are specifically connected to datum node 0, and blocks F • • • H are not.

(i) N consists of A • • • E,F and at least one more connected network. Then, according
to Sect. 3, the rank of the network admittance matrix is less than t — 1 so that all
the Arv = 0.

(ii) N consists of A ■ ■ ■ E and F. Then if u, p are nodes in A, Au„ = AAurJAB ■ • ■ AEAF .
Since F is not connected to 0, AF = 0 so that A„„ = 0. Similar conclusions hold when
u, p are both in B, • • • , E. Suppose u, p are nodes in F. Then A„„ = AaAb • • • AEAFuv .
Here AF has the structure of D so that (2.6) holds. Consequently if q is any other node
in F, AFuv = AFuq , so that Auv = Aua in this case.

(iii) N consists of a connected network A • • ■ E. If u, p, q are nodes in A, Auv =
AauvAb • • • AE and A„„ = AAuaAB • • • AE ■ According to Lemma 5.1, after multiplica-
tion by a suitable power of s, AAuv and AAuq have some power of s in common. Con-
sequently the same must be true of s'~1Auv and s'_1Aua . A similar proof applies to nodes
in each of the remaining blocks* B, • • ■ , E. This completes the proof of the lemma.

We now prove the coefficient relations stated in the following theorems.
Theorem 5.1. In any RC network, Ava and APP — Ava are polynomials in s without

any missing powers of s, all of whose coefficients are positive.
Theorem 5.2. In any (t + I)-node RLC network without transformers, st~1Avq and

s'~1(Avv — Am) are polynomials in s with non-negative coefficients. Power gaps may occur
but the coefficients of two consecutive powers of s cannot be zero unless all subsequent coeffi-
cients vanish.

The proof of Theorem 5.1 follows; the proof for Theorem 5.2 is completely analogous.
We begin by noting that if t = 2, Au = y22 and A12 = y21 . Hence Theorem 5.1 is true
in this case. Assume the theorem is true for all networks with t < r and let A belong
to any RC network N for which t = r. Let N' be the network (with t = r — 1) formed
by the short circuit of nodes 0 and 1 and let its corresponding A be A'. Then A' = Au ,
as indicated in Sect. 2. From (4.2),

A12 — ^2 y„\A

*However, if u, p are in A and v, q are in B, then Aup and A„<, need not have some power of s in
common.
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By the hypothesis of the induction, the theorem is true for each A'2 and hence
also for the products y,iA£2 . Now for all nodes <r not connected to node 2 in JV', A£2 = 0,
so that no contribution to A12 is made by such A£2 . Furthermore, for all nodes <r con-
nected to node 2 in 0N', the corresponding A'„2 have a power of s in common, according
to Lemma 5.2. Consequently the corresponding products either have a power
of s in common or have terms containing consecutive powers of s. Hence the sum of
all these products constitute a polynomial in s with positive coefficients and no missing
powers. A similar conclusion may be proved for any ABa belonging to N. This completes
the induction for the Apa and proves Theorem 5.1 for this case. A similar result for
APJ> — Av„ follows immediately from (2.9).

6. Some illustrative examples. The preceding section has shown that for an RC
network, A and its cofactors have no power gaps and positive coefficients. However
if the ratios of these determinants are considered, it is well known that even negative
coefficients can occur after deletion of possible common factors. The earliest example
appears to be that of a voltage transfer function A12/An whose numerator has a negative
coefficient [1, pp. 120-122], An example of a 5 node network whose transfer impedance
Zi2 has a negative coefficient appears in [5, p. 92], In this latter paper, Slepian and
Weinberg prove that if An , A12 and AU22 all have a common factor* s + a and if t < 4,
then A 12/(s + a) has all non-negative coefficients. The authors speculate concerning
the truth of this theorem if t > 4. The following counter example shows that the con-
clusion of this theorem may be false if t > 4.

10-1 0 0
0 s + 1 0 -1 -s

A = -1 0 2(s + 1) -1 -s

0 -1 -1 4s+3 0

0 —s —s 0 3s + 4
For the corresponding 6 node RC network, A, A12, An22 each has a simple zero at s = — 1,
A„ has a double zero and A22 ̂  0. We find that

A12 = (s + l)(4s2 — s + 4)

so that both Zl2 and — F12 have a negative coefficient after common factor deletion.
In all the preceding examples, a common factor has been present in some but not

all of the determinants that arise in RC two-port synthesis. In the synthesis problem,
the triplet of admittance functions Fn , F12, F22 (or Ztl, Z12, Z22) completely specifying
the external behavior of the two-port are given and the network must be determined.
This specification determines all the network determinants

A, An i Ai2 , A22 , An22 (6.1)

up to a common multiplicative factor. Under these circumstances, is it possible for
AX2/(s + a) to have a zero or negative coefficient after deletion of a factor (s + a) present
in each of the determinants (6.1)? Stated otherwise, do triplets Fn , Fi2 , F22 exist
which cannot be realized as grounded RC two-ports except by the introduction of a
common factor into all the determinants (6.1)?

*Here a > 0, since all the eigenvalues of A or any principal minor must be non-negative according
to classical algebraic theory.
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A partial answer is afforded by the following example which proves that A 12/(s + a)
may have missing powers. Let

v — v _ i i 1 I s _ s2 + 4s + 1
2 2 s+l_ 2(8+1)

v — s s2 + 1
% 12 — o ' o

(6.2)

2 ' 2 s + 1 2(8+1)
These admittance functions may be realized by the grounded RC two-port whose A
is given by

' s + 1 0 —s -1

A = 0 s + 1 — s — 1

—s —s 2s + 2 0

-1 -1 0 2s+2
Here An = A22 = 2(s + l)(s2 + 4s + 1), Al2 = 2(s + l)(s2 + 1), Au22 = 4(s + l)2,
A = 8s(s + l)2. According to Theorem 5.1, the functions (6.2) cannot be realized except
by the introduction of a surplus factor into all the network determinants (6.1). It is
the first example of a realization problem in which the behavior of an RC two-port is
completely specified and can only be synthesized in this manner.

7. The structure of AJ2/(s + a). Examples similar to (6.2) may be constructed in
which the numerator of — F,2 has a negative coefficient. These admittance triplets
satisfy all known realizability conditions for a grounded RC two-port but their synthesis
has not been accomplished thus far. These circumstances raise the question of whether
Ai2/(s + a) may have a negative coefficient when (s + a), a > 0, is a common factor
of all the determinants (6.1). We now consider this problem. The reader is reminded
that the ranges of the various subscripts which appear in the sequel are indicated in
the footnote to equation (2.1).

We assume that each of (6.1) for an RC network has the factor s + a. If /(s) is
divisible by s + a, we write /(s) ~ 0. Now by a theorem of Jacobi

Aj,qA up AptA UQ AAj,aup (7.1)
is true for any arbitrary determinant A. Since the network determinant A is symmetric,
it follows from (7.1) with \p = q = 1, u = v that A,„ ~ 0. Similarly A2„ ~ 0. If A is
replaced by Alr, then (7.1) with p = q = 2,u = v proves that Alr2u ~ 0. Consequently

A ~ 0, Alu ~ 0, A2u ~ 0, AIr2u ~ 0 (7.2)
This means that the (t — 2) X t matrix

K«P).] (7.3)
has rank less than (t — 2). Here (ap)0 is the value of (ap), defined by (2.2), when s = —a.
It follows that the row vectors of (7.3) are linearly dependent; that is, constants Kh ,
not all zero, exist so that

E Ka(ap)0 = 0. (7.4)
a-3

Conversely, equations (7.4) are sufficient conditions for the existence of a common
factor s + a as stated in (7.2).
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If some Ka , say K3, equals zero, then An2233 — 0 since all minors of (7.3) containing
rows 4, 5, • • • ,t are zero. Similarly, using the Laplace expansion of A1133 or A2233 according
to elements of the top row, we find that An33 ~ 0, A2233 — 0. To simplify the subsequent
discussion, we assume that none of the A1122a« are equal to zero. This assumption
implies that K3K4 ■ ■ ■ K, ^ 0. This restriction is not essential, as the excluded cases
may be treated by a modification of the method employed in the sequel.

We introduce the notation

dap = A1122<*/s(s) i dapo = da$( a). (7.5)

It follows from the last t — 2 equations of (7.4) that

=!«. (7 6)U ypo IYp

Let c = d330/\ d330 1 and choose K3 in (7.4) so that d330 = cK\ . It follows from (7.6)
that

daiso = cKaKf, . (7.7)

Now according to classical eigenvalue theory, the roots of each daa(s) separate those
of A1122(s). Also daa{0) > 0 and daa( — a) 5^ 0. Hence all the daa have the same sign
at s = —a. Consequently the Ka determined by (7.7) with a = j3 are all real.

We now consider the structure of A12/(s + a). Without loss of generality we may
choose a = 1. Any A12 may be constructed from its minor An22 by bordering A1122 with
a row and column of elements in accordance with (4.1). With this in mind, we investi-
gate whether a A12 may be generated from a given Ai122 , with AU22( —1) = 0, by adding
an arbitrary realizable border of elements satisfying (7.4) such that A12/(s + 1) has
some negative coefficients.

Let

UPI d-pqS ~f~ frpg i
TO

daf} ^ »
v = 0

TO + 1

Aji22 — 22 € s >
<r=« 0

to 4- 2

A12 — A.ts ,
T-0

A12/(S + 1) = z BJ,

where, in general, m = t — 3. Now according to (4.3) and (7.5),
t

Ai2 = 1/2iA1122 4" 22 ya\y2pdap.
a, (3-3

Substitution of the preceding equations into the last equation yields

Ar = a2le~' + b2it + 22 [bcii>2^era0 + (a<.i&2/s + bala2^)eTa/ + a„ia2^e«/],

r = 0, 1, 2, ••• ,m + 2, (7.8)
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B.= A.-B^lt «r = 0, 1,2, •••,«+ 1, (7.9)

where t~v = em+1+' = - e™^" = 0 if v > 0. From (7.8) and (7.9), we obtain

B, — b21C + a21C 1 + Z [b^bzpC'ct, + (aalb2p + 6ala2^)C«/ + aala2e,C°ap],
a ,/3

where

so that

O- = 0, 1,2, ••• , m + 1, (7.10)

/-><r it a— 1 I o—2 , o aC = e — € i c — • • • ± € = e — G ,

Ca   <r <r— 1 | <r—2 , o   a
a(} ^a/3 ^a/3 ~l ^a/S * * * 6a/S ^o/3 ^ a/3 »

m

Aum/(8 + 1) = Z CV, (7.11)

m—1 m

daf/(8 + i) = Z cy + (7.i2)
ir=o s "T j-

Note also that C" = C~} = 0, Cm+1+" = -C"+', C^' = -CT/~l for v > 0. Since
Au22 is divisible by (s + 1), we readily find that B„ > 0 and Bm + l > 0.

We now investigate the conditions which must be satisfied by AU22 if the remaining
coefficients Bx , B2 , ■ • • , Bm are to be non-negative for all realizable borders of AU22
satisfying (7.4). While a solution may be obtained by other means, it is convenient to
phrase the problem as one in linear programming. Write B„, given by (7.10), in the form

B. = £ (Flawl + G'wbwl), or = 1, 2, • • • , m. (7.13)
w =2

The variables awl , bwl are subject to the realizability inequalities

awl > 0, bwl > 0,

— aal > —ca , —bai > — da , (7.14)

Z Ka{aai - bal) >0, J2 —Ka(aal — bal) > 0.
a=3 a =3

Here
/ t

Ca & a a ^a(J 1 ^ a b aa ^ 1 ba0 ,
(3-3 /S-3

and the last inequalities are equivalent to (7.4) with p = 1.
Consider the values assumed by B„ in the convex space S of the variables awl ,

bwi satisfying (7.14). Since the origin lies in S, the value B„ = 0 is assumed in S. There-
fore the minimum value m of B„ obeys m < 0. We determine the conditions that guar-
antee m — 0.

The linear programming problem and its dual problem are exhibited in the customary
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fashion [3, p. 55] by the matrix

xt x2 xa x4

d 21

^21

a31 Ks —K3 —1 0

&3i — Ka K3 0 —1

&t\

bn

0 0 0 0
0 0 0 0

K, -K, 0 0

L-Kt Kt 0 0
^ 0 0 —c3 — d3

X2l-3

0 0
0 0

0 0
0 0

-1 0

0 -1_

Cf dt

Fl
GZ
Fl
GZ

F't
g:

According to the duality theorem [3, p. 60] the minimum m for the original problem
equals the maximum M for the dual problem. Referring to the above matrix this dual
problem is: Subject to the inequalities

> 0, t = 1, 2, ■ • • , 2t — 2,
0<F2, 0<(r2, <r = 1,2, • • • , in, ^ j

—x2a-3 + Ka{Xi — x2) < F'a ,

—x2a-2 — Ka(xi — x2) < G'a ,

find the maximum M of
t

5 = — 2 (c«x2„-3 + dax2a-2) + 0-x, + O-Zz .
a-3

For M to equal zero, since ca > 0,da> 0, it is necessary and sufficient for all xT appearing
in B to equal zero while the inequalities (7.15) remain true.

From (7.10), (7.11) and (7.13) Fl = C"'1 > 0 and G'2 = C° > 0, so these inequalities
(7.15) are true. The remaining inequalities may be written xr > 0 and

— GZ — x2a-2 < Ka(x! — x2) < F°a + x2a-3 . (7.16)

Assuming all ca , da are not zero*, the condition M = 0 requires that the inequalities

-p- < (*. Ka> 0,

< (®, - x2) < , Ky < 0K | ^ - | Ky
derived from (7.16) with x3 = X4, = • • • = x2t~2 = 0, be consistent. Since xx , x2 may
take on arbitrary non-negative values, these last inequalities are equivalent to

*If any ca = 0 or da = 0, a continuity argument shows that the inequalities (7.17) must also hold
in this case if B. > 0.
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P" + > 0, if Ka > 0, K, > 0,
Ka ' K,

F- A —
Ka ^ \K

i G_
Ka I K

K + T^-l > 0, if Ka > 0, Ky < 0,
7 (7.17)

G% + > 0, if Ka > 0, Ky < 0,
y

, g:
I Ky I + I Ks I - °' Ky < °' K'<0>

where the indices a, fi, y, 5 take on all values in the range 3, 4, • • • , t for which Ka > 0,
Kp > 0, Ky < 0, Kt < 0.

Reference to (7.10) and (7.13) shows that the left members of (7.17) are linear
forms in the variables and b2p , /3 — 3, 4, • • • , t. The procedure employed to minimize
B„ may now be followed for each of these linear forms. After writing each linear form
similar to (7.13) to exhibit the coefficients of a2ji , b2p the result (7.17) is applied to it.
In this way, a set of inequalities are obtained which, after elimination of duplications,
may be summarized as follows:

Let a, y be row indices and /3, 8 column indices of A1122 which determine four vertices
a(3, ad, 7(3, 75. Then

C<r-2 p<r-1 rv*-\ ri<*
I ^ I ^ aS I ^ yS H /7 lO\

I cmafi i "1~ | c%, i i c:s i + | c:, | - ( h
if the C" at all four vertices have like signs,

p<r r\a fi*~l ri<r~ 1
 l °aS _|_ uil  > a (n iq\

' I nm i ~ i nm i * | rim | l u -±oj2I cze i ' i cn, i ' i c:, i ' i cy,
if C™/;, C:s are of one sign, , C™5 are of opposite sign, and

Cv pa pa pa
or/3 | ^ y(J i ^ a 8 i ^ y S

1^1 + tcSt+TcfiT+KJfrra 0 <7-18)-
if C™,3, Cy8 are of one sign, C™{ , Cyff are of opposite sign. In writing (7.18) in this form,
we have used

c:, = (-1 )mcKaKf ,

which follows from (7.7) and (7.12), to replace the products KaKp . The Cafi are defined
by (7.12). This completes the proof of the theorem.

Theorem 7.1. Let A1122 be any RC network determinant divisible by s + 1 none of
whose principal minors is so divisible. Then, jor any realizable A constructed by bordering
Ai122 with two rows and columns such that A, An , A12 , A22 are each divisible by s + 1,
inequalities (7.18) are the necessary and sufficient conditions that all the coefficients of
Ai2/(s + 1) be non-negative.

Three possibilities exist concerning conditions (7.18): (i) The conditions (7.18) do
in fact apply to all An22's referred to in Theorem 7.1 and are a consequence of known
realizability conditions, (ii) These conditions apply to all these An22's and constitute
additional independent realizability conditions, (iii) These conditions do not apply to
all these A1122's, leading to the construction of a counter example; that is, a grounded RC
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two-port for which the determinants (6.1) are all divisible by s + 1 and Ai2/(s + 1)
has some negative coefficients. Under (i) and (ii), the corresponding Ai2/(s + 1) would
have non-negative coefficients only. These possibilities will be investigated elsewhere.
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