
47

ON THE OPTIMAL DESIGN OF A VIBRATING BEAM*

BY
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Abstract. This paper deals with the problem of finding the best possible tapering
of a simply supported beam, which for a given volume would have the highest possible
value of the natural frequency for the lowest mode of lateral vibrations. The differential
equation governing the deflection is given and a procedure to solve this non-linear
equation by successive iterations is presented.

1. Introduction. The interest in optimal design of columns and beams has existed
for many years. A special group of optimal design problems are connected with eigen-
value problems, namely those in which stability or vibrations have to be considered.
The classical problem of finding the optimal shape of an Euler-Bernoulli column, sub-
jected to a compressive load was treated by Lagrange [1] in 1770, whose treatment
of this subject, however, is faulty. The correct solution was first obtained by Clausen
[2] in 1851 and then, independently by Keller [3] in 1960. It was found that by tapering
the column, the critical load could be increased at most by § in comparison with a
cylindrical column of the same material, volume, length and cross-sectional form.
This result was later on extended by Tadjbakhsh and Keller [4] to include other boundary
conditions and some additional results. Beesack [5] and Schwarz [6], [7], [8] have studied
the extreme values of the natural frequencies of strings, beams, and plates in which
cases the mass distribution was varied while everything else was held constant.

In this paper we shall deal with the optimal design of a vibrating beam, assuming
a certain relation between the mass per unit length and the bending rigidity.

A simply supported beam, performing small harmonic vibrations in a plane, will
have an infinite number of natural frequencies. We shall restrict our attention to the
lowest frequency co0 • Let us assume that all cross sections are similar and of a given
form, and that, furthermore, the material, length, and volume of the beam are given.
What tapering will then give the beam the highest possible value of co0 ?

It will be shown that the lowest natural frequency oj0 for the most appropriately
tapered beam will exceed that of a cylindrical beam of the same material, length, volume,
and cross-sectional form only by approximately 6.6 per cent.

The result can also be stated as an isoperimetric inequality, stating that the lowest
natural frequency of a beam of a given material and cross-sectional form is always
less or equal to a certain function of its length and volume.

Apart from its theoretical interest, this result may have some importance in the
design of shafts, where it shows how much, or rather, how little can be won in critical
speed by tapering the shaft.

2. Bending vibrations of a tapered beam. Let us consider small plane vibrations
of a straight, simply supported beam. Neglecting the influence of shear stresses and
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of rotational inertia, the equation of motion is given by

where y is the lateral deflection in the plane of bending, £ the coordinate along the axis
of the beam, E Young's modulus, I the principal moment of inertia of the cross section,
perpendicular to the plane of bending, w the natural angular frequency, y the mass
per unit volume, and A the area of the cross section.

In our case, we shall assume that I and A are functions of the coordinate For
a simply supported beam, we have the following boundary conditions,

y(0) = 0, y(l) = 0, EI^ (0) =0, EI ^ (Z) = 0,

where I denotes the length of the beam.
Introducing dimensionless quantities, we may write the differential equation and

the boundary conditions as follows:

(«V0" - \ay = 0, (2.1)
2/(0) = 2/(1) = aV'(0) = ay"(V) = 0. (2.2)

Here, the dash indicates differentiation with respect to the dimensionless coordinate
x = £/Z while a(x) is the dimensionless area function a = Al/V, the total volume of
the beam being V, and

(2.3)

where c = I/A2 is a constant, characteristic of the cross sectional form.
From the definition of the area function a, it follows that

Ll

a dx = 1. (2.4)

The eigenvalues of the problem (2.1), (2.2) are all dependent on and uniquely de-
termined by the function a{x). Let from now on X correspond to the lowest eigenvalue
and y to the associated eigenfunction. We now raise the following question. Among
all non-negative functions a, satisfying the condition (2.4), is there one which renders
X a maximum? If so, our problem is to determine this function and to find corresponding
eigenvalue X.

3. The variational problem. Let us multiply both sides of equation (2.1) by y
and integrate between the limits 0 and 1. If the first term is integrated by parts and
the boundary conditions considered, we obtain the well known formula,

f' Ay")2 dx
^ 0 (3.1)

/ ay2 dx
J 0

We assume that our problem has a solution a(x) and that the corresponding first
eigenf unction is y(x). Let a(x, e) be a family of functions depending differentiably on
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the parameter e, all satisfying the condition (2.4) and containing among them the solu-
tion a(x) — a(x, 0).

To each function a(x, e) of this family there corresponds a first eigenfunction y(x, e),
being the solution of the eigenvalue problem. We note that also y(x, e) will depend
differentiably on e and that furthermore each function y(x, e) is an "admissible function"
to the eigenvalue problem with a = a(x, 0). This follows from the fact that each function
y(x, e) satisfies the essential boundary conditions, i.e. y(0, e) = y{ 1, e) = 0 for all e
and that y is sufficiently differentiate with respect to x.

Let us consider the function R(e, S), defined by the quotient

f [a(x, e)?[y"(x, 5)]2 dx
R(e, 5) = JS— . (3.2)

/ a(x, t)[y(x, S)]2 dx
Jo

Clearly II(e, e) = X(e) is the lowest eigenvalue for any area function of the selected
family and R(0, 0) = X(0) is the extreme value looked for. Hence,

(I).-0
or

@9. ♦©.(&-.
where index zero denotes the case e = S = 0.

For e = 0 expression (3.2) represents the Rayleigh quotient for the eigenvalue problem
(2.1), (2.2). In the domain of all admissible functions, this quotient is minimized by
the eigenfunction y(x). Since the functions y(x, 5) are admissible and contain the solution
y(x, 0) among them, it follows that (dR/d8)0 — 0. Thus, condition (3.3) can be replaced
by a simpler one,

(f \ '0
Applying this condition to (3.2) ,we obtain

f ay2 dx [ 2aat(y"¥ dx — f a2(y")2 dx f a,y2 dx — 0,
Jo Jo Jo Jo

where ae denotes the partial derivative of a with respect to e at e = 0.
Dividing through by ay 2dx and making use of (3.1), we get

f [2a(y"f - \y2]at dx = 0. (3.4)
Jo

This relation must hold for any particular family of functions a(x, e) that satisfies
condition (2.4), i.e. for which

[ a, dx = 0, (3.5)
Jo
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but this can only be true if the factor 2a(y"'f — Xy2 is independent of x. We may there-
fore write

2a(y")2 - \y2 = \a2 (3.6)

where a2 is a number, independent of x. Solving for a we get
•v 2 I 2

_ ^ a + y (oa ~ 2 (y")2 (3'7)

Substitution into (2.1) yields the following differential equation for y:

[V +yVl" = 2o2 + y\ (38)
L (y'T J (y'r y- (3-8)

To determine a2, we multiply Eq. (3.6) by a and integrate between the limits 0
and 1, obtaining

f 2 a(y")2 dx — X f ay2 dx — \a2 [ a
J 0 J o Jo

Substituting from (2.4) and (3.1), we find

dx.

«• = /'Jo
ay2 dx) (3.9)

this relation shows that a2 is a positive number. Let us now substitute a from (3.7)
into (2.4) and (3.9). There result the equations:

_ ..X [\jf_dx + ± t J—^
2 Jo (y")2 + 2 Jo (y")2

y dx,2 x r1 _dx_ w'i
a 2 Jo (y")2 + 2 Jo (y":

from which a2 and X may be obtained as follows:

f1 (y2/y")2 dx
a4 = ^ , (3.10)

/ (1/Y'2) dx
J 0

X =
[ (y/y"T dx + f {y2/y"f dx f (1/y"2) dx

Jo L^o Jo

(3.11)

Since a2 is a positive number, the boundary conditions can be written in the form

y(0) = »(D = - o.

The problem to be solved is a non-linear eigenvalue problem consisting of the homo-
geneous fourth order non-linear differential equation (3.8) and the boundary condi-
tions (3.12).

4. Behaviour of the solution near the end points. The boundary conditions (3.12)
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indicate that the solution is singular at the end points. In order to investigate this
singular behavior of the solution, the differential equation (3.8) is written in the form,

, , (y'")2 2y(y")2 + Ay"(y')2 - 24yy'y"' 8y"(yy')2
V ~4 y" ~ 3(a2 + y2) ~ 3(a2 + y2)2 ~ °' (4J)

Let us assume that the solution y(x) can be expanded at x = Q in a power series
of x, such that the lowest non-integer power is p. When we substitute y = bxv + • •
into equation (4.1) and equate the coefficients of the leading terms to zero, we obtain
V = 5/3.

The solution thus takes the following form,

y(x) = a:x + a2x2 + • • • + bx5/3 + • • • . (4.2)

which satisfies the boundary conditions at x = 0.
Substitution into (3.7) shows that the area function a is proportional to x2/3 for

small values of x, and thus the linear dimensions—or diameter—of the cross section is
proportional to x1/3 near the endpoint. Clearly, corresponding relations hold at the
other end x = 1.

5. Solution by successive iterations. Since a solution of the differential equation
(3.8) cannot be obtained in closed form, we proceed to solve it by successive iterations.

Let us assume that the solution y(x) is symmetric with respect to x — §. Instead
of the boundary conditions at x = 1, we then have the following at the mid point

2/(1/2) =
(a2 + y2)2

L (y"f . 0.

By formal integration of (3.8) we find

y(x) = J j
J 0 J x

!/2 / 2 I 2\2
(« + y2)2

f [1/2 [(a2 + y2)y/y"2] dx2
j 0 J X

1/3

dx2, (5.1)

from which expression we construct a procedure for successive iterations as follows:

2/»+i(z) = / fJO J x

(al + yl)2
f>x /»1/2

2 [(al + yDyJy'n'2] dx2
L 0 J x

1/3

dx (5.2)

where

f (yl/y'n)2 dx
a]: = ^ . (5.3)

/ (W2) dx
Jo

Starting out with an arbitrary function y0 and substituting it into the right hand side
of equations (5.3) and (5.2), we obtain a new function yx which satisfies all boundary
conditions. In this manner we obtain a sequence of functions, 2/0,2/1,2/2, • • • of which
all—except perhaps y0—satisfy the boundary conditions. If this sequence converges
to a function, that function will satisfy (5.1) and is thus the solution y(x).

Numerical computations indicate that the convergence is very strong. Thus, starting
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out with y" = 1 we obtain after only a few iterations an accurate estimate of the solu-
tion y{x). The result, the function y and its two first derivatives are shown in Fig. 1.
Corresponding value of X is X = 110.6580. In Fig. 2 the diameter, i.e. a1/2 is shown
as a function of x. The dotted line indicates the dimensions of a cylindrical beam of
the same volume.

The result can be stated in the following isoperimetric inequality: The lowest natural
frequency co0 of any simply supported beam having similar cross sections satisfies the
following inequality,

coo < 110.6580EcV/yl5 (5.4)
Since for a cylindrical beam we have \c = t4, we conclude that the most appropriate

tapering—keeping the total volume unchanged—will increase the lowest natural fre-
quency with a fraction

(110.6580)1/2A2 = 1.066,

i.e. with about 6.6 per cent.

Fig. 1.

Fig. 2.
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6. Discussion. The variational method employed yields a stationary value of A.
Although there is little doubt that this value is a true maximum, a strict proof of this
is lacking. Also, there is no proof concerning the supposed convergence of the sequence
of functions obtained by the iteration formulas. We may hope that such proofs will
eventually be given.

Following a very similar procedure one can solve the corresponding problem with
other boundary conditions, such as clamped-free and clamped-clamped. In a paper
to follow it will be shown that a whole group of related problems for beams and plates
can be solved in a similar fashion.
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