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EXTENDED THEOREMS OF LIMIT ANALYSIS*

By T. MURA (Northwestern University, Evanston, III.),
W. H. RIMAWI (University of Illinois, Chicago, III.),

and S. L. LEE (Northwestern University, Evanston, III.).

1. Introduction. In limit analysis, the statically admissible stress field cannot lie
outside of the hypersurface of yield criterion, and the stress field calculated by the
kinematically admissible velocity field should be on the hypersurface [1], In this paper
such a requirement is eliminated, and replaced by the integral mean of the yield criterion.

The material considered is perfectly plastic and isotropic. As far as the proofs of
these generalized problems are concerned, the discussion is restricted to continuous
stress and velocity fields for the sake of brevity.

Mura and Lee [2] showed that a state of impeding plastic flow renders the following
functional stationary, the safety factor being the stationary value of the functional.
The functional is:

F[Vi , Su , cr, Ri , to, n, <p] = / + ndV
J v

+ f ffbifit,, dV - f It,v, dS - ml f T,vx dS - 1) - [ m[/(s,-,) + <P2] dV (1)
J V J S v St / J v

with constraint condition

M > 0. (2)

The arguments of F are the independent variables: velocity y, , stress deviation sif ,
and Lagrangian multipliers a, Rjn, n and <p. The function /(s,,-) is the yield criterion

/(«,.,) = - k2 , (3)

and Ti is the given surface traction defined on a part of the boundary surface denoted
by ST ■ On Sv , the remaining part of the boundary, the velocity vector is required
to vanish.

Setting the variation of (1) equal to zero yields the following conditions:

xi.. i - n d/(Vi.i + vjti) = n — in V,
(4)

n > 0,
(s,,- + = 0 in V, (5)

(su + SijO^n,- = toT,- on ST , (6)

(sa + 5,,u)n,- = R{ on Sr , (7)

/(«,.,) + = 0 in V, (8)
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H<p — 0 in V, (9)

SijVi.j = in V, (10)

Vi = 0 on Sv , (11)

[ 7>, dS = I. (12)
J St

It should be noted that the Lagrangian multipliers a, Rt , m, p and <p are respectively
the mean stress, the reaction on S7 , the safety factor, the positive scalar of propor-
tionality and the yield parameter. When the parameter <p is non-zero, n = 0 and /(s,,) < 0;
when <p vanishes, /(«</) = 0. It is of interest to note that (12) satisfies the requirement
of classical upper bound theorem that the integral be positive definite. Setting the
integral equal to unity only determines the scale of the otherwise arbitrary size of the
velocity vector.

Consider the arbitrary arguments

v • = Vi + 8v{ , s°a = Sa + 8sij , ■ ■ ■ , (13)

in which v{ , ssl- , • • • denote the stationary set of arguments of (1) and 8v{ , <5s,,- , etc.
are the variations. If the arguments of (1) are substituted by (13), giving regards to
conditions (4) to (12) for v{ , s,-,- , etc., F takes the form

, s°, , <r° , fi? , m° , m° , v°] = m + [ to„i(to,., + &,,.) dV
J V

+ f SadijSVij dV — f SRjSVi dS — 8m f T{8i\ dS
J V ' J Sv J ST

- [ m{|SsvSsa + (5^)2} dV - [ 5mI/(s°,) + (^°)2} dV. (14)
J v J v

2. Lower bound theorem. The inequality

m° < m (15)
1 + max U(s°i) + (<p")2\/2k

holds for any set of s°, , a", m°, fi" and y satisfying

(s°, + 5,,.<70)„. = 0 in F, (16)

(s°; + 8,,cr")n, = m°T, on Sr , (17)

/FM°{/(««) + (v)*} dV = 0, (18)

n° > 0. (19)
Since the right side of (15) is the safety factor, the left side gives a lower bound for the
safety factor.

The theorem is proven as follows. Expression (14) can be transformed into

F = m [ + O)2} dV - f 5m{/(s°,) + (*°)2} dV (20)
J v J v
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by integrating the second and third terms by parts in view of (5), (6), (7), (16) and (17)
and setting

(s°a + 5i;<70)7i,- = Rl on Sv , (21)

where R° denotes the reaction of the stress field on S v . Also, integrating (1) with arbitrary
arguments , s",- , a0, R" , m°, ju° and <p° and constraint conditions (16), (17) and (21)
gives

F = m° — f m° {/(«!,) + (*>°)2} dV. (22)
J v

Equations (18), (20) and (22) yield

m° < m - [ + (v°)2} dV, (23)
J v

because of (18) and since fv /j.{i Ss,,- os;, + (Sip)2J dV is positive definite. Condition
(18) also gives

- [ 8„{/(«?,) + (/)2} dV = [ ,.(/(»?#) + (Z)2} dV, (24)
J V J V

since n" = fi + 8^. Substituting (24) into (23) and taking the maximum value of the
integrand we have

m° < m + max {/(s",) + (<p0)2} [ dV. (25)
J v

Since

m = m / dS — I (s,-,- + 8iia)njvi dS
•1st J s

= / (s,,- + Si/a),jVi dV + / (s,-,- + dV
J v J V

- f SiiKvi.i +Vj,i)dV = [ SijuSij dV = 2fc2 [ txdV,
J v J v J V

rearranging yields

[ n dV = m/(2k2). (26)j ^

The proof is completed by combining (25) and (26). It should be noted that
max {/(s;,) + (ip°)2\ > 0 because of conditions (18) and (19).

Theorem (15), includes the classical definition of the lower bound, as is seen by taking
(18) in the special form

/(«!,) + (<pY = 0 (27)
In this case max {/(s°,) + (<P°)2} vanishes, and (15) reduces to

m < m. (28)

Thus, the new lower bound expressed by the left side of (15) holds for a broader stress
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field than the statically admissible stress field by taking the integral mean of the yield
criterion, (18).

3. Upper bound theorem. The inequality

(j* 2fcju* dV^j max {fs*s*}1/2 > m (29)

holds for any set of v* , s * and n* satisfying

v* = 0 on Sr , (30)

dijvf= 0 in V, (31)

[ T,v* dS = 1, (32)
J S T

»*s*, = Hvf., + (33)

[ »*m) dV = 0. (34)
J v

Since the right side of (29) is the safety factor, the left side gives an upper bound for
the safety factor.

The theorem is proven as follows. It can be shown from (33) that

M* = {*(»?., + vUhivti + vf.dV/2/(sLs*ny/2 . (35)
Also, from (3) and (8),

2k > (2shlshiy/2 . (36)

Substituting (35) and (36) into f 2k /i* dV we haveJ y

Jv 2kn* dV > Jv [(2SiiS)l!)1/2{K^„- + vUm.t + vf„)V/2/(s*nsL)1/2 dV. (37)

Application of Schwarz' inequality and taking the maximum value of (s*„s*„)1/2 lead to

[ 2fc"* dV ~ max^Cv^ [ S>'i(vT" + Vl<) dV■ (38)Jv max Jv

On the other hand,

[ s.jKw*.,- + vf,,) dV = [ (sa + 8uit)v?j dV = [ (sif + bua)n,v* dS = m, (39)
J v J V J s

because of (5), (6), (30) to (32). The proof is completed by combining (38) and (39).
It should be mentioned that ju* and s * are determined from v* by means of (33) and (34).

The theorem, (29), includes the classical definition of the upper bound as is seen by
taking (34) in the special form

/(s*) = 0 (40)
In this case max {}1/2 becomes k, and (29) reduces to

[ 2/cV dV > m. (41)
J V
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which yields the classical upper bound by taking (s*„s*J1/2 = (2)1/2/c in (35). Thus,
the new upper bound expressed by the left side of (29) holds for a broader stress field
derived from the admissible velocity field in classical limit analysis.

The proposed analysis can be easily extended to include the case with discontinuous
stress and velocity fields. The discontinuity of the stress field for the lower bound is
admissible if the vector (s°,- + 5,,o-0)n,- defined on the surface of discontinuity is con-
tinuous. If a velocity field with slip discontinuity is employed for the upper bound,
(39) takes the modified form

f s.M'f., + Vu dV = m + Z [ Tak)[vfh) - -4<w] dS, (42)
Jv J Shk

where Shk denotes the surface of discontinuity between regions Rh and Rk , Tihk) the
tangential stress transmitted across the surface element dS from Iik onto Rh , and v%"']
and v%ik) the tangential velocity components in Rh and Rk respectively. Thus, it can be
shown [3] that (29) becomes

( [ 21c2ix* dV) max {is *s,*} 1/2/fc + k £ f l^*a> - »¥<M| dS > m. (43)
/ JShlc

4. Example. The tension specimen subjected to uniformly distributed tensile
stress mp per unit length, shown in Figs, la and lb, will be used to illustrate the appli-
cation of the theorems, assuming a state of plane stress. Due to symmetry only one
quarter of the specimen needs be considered.

The assumed stress field consists of zones of constant stresses separated by lines of

Mill
Fig. 1. (a) Front view of tension specimen, (b) Side view with velocity field indicated, (c) Zones of

constant stress field in first quadrant.
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discontinuity as shown in Fig. lc. Such a stress field obviously satisfies (16). The bound-
ary conditions and the requirement of continuity of stresses along the lines of discontinuity
yield the three non-vanishing stress components <r°, <j\ and r° in the three zones in terms
of the redundant parameter X (Fig. lc). These stress components are: for zone 1,

where

for zone 2,

where

a" = (1 — 2A)m"p, = m°p and t° = 0, (44)

A = (1.377 + .417X - .695X2)/(2.12 + .267X - 1.390X2);

tr° = .281 Bmp, <t" = 1.719Bm°p, t° = .695Bm°p, (45)

B = l/(.794 + .695X);
and for zone 3,

<r° = (2.17 - 2C)m"p, <r° = 2.17m°p, r° = 0, (46)

where

C = (.695X2 + .661X - ,1472)/(.639X2 + .730X).

The Mises yield criterion (3) for the case of plane stress [4] reduces to

/(c,,) = 5(<72 — (7X(7„ + <71 + 3 T2) — k2 . (47)

Substituting (44) to (47) into (22) yields

F = m° — f M°{[4A2 -2A + l](m°)V/3 - k2 + (/)2} dS
J Si

- f {[4.0052(m°)2p2/3 - k2 + (^°)2} dS
J Sa

- f m°{[4C2 - 4.34C + 4.72](m°)V/3 - k2 + (?0)2} dS, (48)
* S 3

where St , S2 and S3 denote the areas of the three zones. Taking <p° and fi to be con-
stants, integrating, and taking the variation of F with respect to n", y and m° yields
three simultaneous equations,

dF/dm° = 0, (49)

dF/d»° = 0, (50)

dF/dv =0; (51)
their solution furnishes

m° = 3A2wk/[('iA2 -2A + 1)5, + 4.0ftB2£2 + (4C2 - 4.34C + 4.72)S3]1/2p, (52)

/ = 1.5/[{(2A - J)2 + .75}+ 4.01B2S2 + {(2C - 1.085)2 + 3.54}S3]my , (53)

<P° = 0, (54)
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where
51 = (8/3 - 2A)w2 , (55)

52 = (1.224 + 1.08A)w2 , (56)

53 = -92Aw2 , (57)

w being the half width of the specimen. It should be observed that (53) satisfies (19),
and (50) assures that (18) is satisfied. Substitution of (52) on the left of (15) yields a
lower bound

to' = m'(k/p, A), (58)

which is plotted in Fig. 2. It should be noted that (58) defines a piecewise continuous
curve. The best bound is to' = .911 k/p at A = .386.

To obtain the lower bound by the classical method, it is necessary to find a stress
field that satisfies equilibrium, the boundary conditions and the yield criterion. The
stress field given by (44), (45) and (46) is admissible if it satisfies the inequality

cr2 — axay + cr~ + 3t2 — 3A;2 < 0. (59)

Substituting (44), (45) and (46) in (59) and rearranging lead to the following in-
equalities:

m° < 1.732fc/[4A2 -2A + l]1/2p, (60)

to0 < .8661c/Bp, (61)

to0 < 1.732/c/[4C2 - 4.34C + 4.72]1/2p, (62)

where A, B and C are as defined previously. The solution of these inequalities is indi-
cated in Fig. 2. The best lower bound is m° = .920 k/p at A = .387.

*2i/2

rrfp/k

1/2 x I
Fig. 2. Lower Bounds Plotted Against Argument X.

  Proposed method
 Classical method
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To evaluate the upper bound of the safety factor, let the upper half of the specimen
move with a constant velocity v0 relative to the lower half as indicated in Fig. lb. This
constant velocity field satisfies (30) and (31), observing that Sr = 0 in this case. Sub-
stituting this velocity field in (32) furnishes

v0 = l/(2pwsina). (63)

Since n* vanishes in this case, (43) reduces to

kf \v*Tw - v*tw\cLS > m. (64)
•> Sht

Integrating the left hand side of (64) with v%(k) = v0 and v%(h) = 0 we have

.92kwv0 sec a > m. (65)

Introduction of v0 from (63) into (65) yields

.92 - csc 2a > m. (66)
V

Since the left hand side of (66) is minimum when a = 7r/4, the best upper bound is
.92 k/p.

For this velocity field, equating the internal work to the external work in the classical
method yields the same upper bound.

5. Conclusions. The results obtained above show that for this example the upper
bounds obtained by the proposed method and the classical method coincide, and the
two lower bounds vary similarly with X (Fig. 2) and are in close agreement.

Drucker [5], in treating a similar problem but using Tresca yield condition, obtained
an upper bound which, for the dimensions of the specimen under consideration, is equal
to .92 k/p.

If, in the proposed lower bound analysis, n° is assumed to be constant as in the
example treated above, the constraint condition (18) is automatically satisfied. If a
lower bound solution for the plane strain problem is available, the stress field can be
conveniently used to obtain the lower bound of the plane stress problem by means of
(15), subject only to constraint condition (19) which is easily satisfied. For example, with
the stress field used by Prager and Hodge [6] in a plane strain problem involving a
tension specimen with semi-circular notches, (15) yields a lower bound for the problem
under consideration equal to .863 k/p which is satisfactory.

In problems where the stress field or the velocity field is a function of the space
coordinates, the proposed method has an advantage over the classical method in that
(18) or (34), the integral mean of the yield condition, eliminates the space variables.
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