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STRESS DISTRIBUTION AROUND A HOLE IN AN ELLIPSOIDAL SHELL*

By

C. N. De SILVA and H. COHEN (University of Minnesota and Honeywell Research Center)

Summary. This paper treats the stress distribution in an ellipsoidal shell of revolu-
tion with a hole. The problem is reduced to the solution of sets of eight simultaneous equa-
tions. If interest is restricted to the neighborhood of the hole, a simplification occurs
requiring the solution of sets of four simultaneous equations.

1. Introduction. The problem of determining the stress concentration caused by
holes in thin shells is a basic one which has not, however, been amenable to solution.
The complicated differential equations governing the deformation have been the main
source of trouble. Lur'e [1] gave a solution for the case of a hole in an infinitely long
closed circular cylindrical shell using the equations of shallow shell theory. His solution
was developed in terms of a "curvature" parameter and in the limiting case when the
latter vanished, the solution reduced to the generalized plane stress distribution in the
neighborhood of a hole in an infinite plate under bi-axial tension.

The present paper treats the stress distribution in an ellipsoidal shell of revolution
with a circular hole the axis of which is parallel to the axis of revolution of the ellipsoid.
The linear shallow shell theory of Green and Zerna [2] is suitably modified to constitute
the framework of the problem. The method of solution is quite general and may be
applied to any type support condition with an arbitrary surface loading. Specifically,
in the interests of demonstrative results, the outer edge is assumed clamped and the
loading uniform.

From the work of Reissner [3], a basic solution {*S0} is given, which solves the problem
for the domain without a hole. By an extension of the addition theorems for Bessel
functions [4], {iS0} is used as a guide to choose directly the solution {S} which satisfies
all the required mathematical conditions. The problem is reduced to solving sets of
eight simultaneous algebraic equations.

Finally, if interest is restricted to the neighborhood of the hole, a residual solution {iSd}
is deduced such that the required solution is {S0} + {Sd}. The problem now involves
solving sets of four simultaneous equations.

2. The basic equations. Following Green and Zerna [2], the deformation of a shallow
shell may be expressed in terms of a complex function \p

\p = w + iK<t>, (2.1)
which satisfies the differential equation

eaV"VUTp + (»AWTs|a,*U = P/B> V-2)
where

X* = X/[12(l - v2)]1/2 , X = t/L, B = E\3L/12(1 - r,2). (2.3)

*Received December 3, 1963; revised manuscript received October 16, 1964. The results presented
in this paper were obtained in the course of research sponsored by the National Science Foundation
under Research Grants NSF-G20192 and NSF-GK99.



110 C. N. DE SILYA AND H. COHEN [Vol. XXIII, No. 2

Here, t is the thickness of the shell, L is the smallest characteristic length of its middle
surface M, E, r?, are Young's modulus and Poisson's ratio respectively, Lz is the distance
of M from a base plane P, the bar before a subscript denotes covariant differentiation
with respect to the metric tensor e of a £„ coordinate system defined in P, p is related
to p(3) , the physical component of the load normal to M, by Lp(3) = p, and e is the
permutation tensor. In (2.1), w is the component of the displacement vector perpendic-
ular to M, <j> is a function from which the membrane stress n is generated by:

n" = (2.4)

K = [12(1 - v2)]1/2/\2E L. (2.5)

The couple tensor m and the shear stress vector q are given by

oi*' = -BHa**w\A ; q" = m"7/3, (2.6)

where

Ha^ = i{e°Vp + eape?x + r,(ea\" + a*'/7)}. (2.7)

It is not too difficult to show [5] that for stress boundary conditions we specify, along
a curve C in P, the traction system {a} :

cp C dH A
n ua ; q ua — —; G>,

where

H — Lttsx ma^uauk ; G = Lm"^uau^ ,

u is the unit normal to C and d/ds is the derivative along the tangent to C. If we choose
C to be = constant, then

^(12) ,2 . . V. /o o\^(ii) J ̂ (12) i (7u) 2^ R ' m<11)'' (2.8)

where the parentheses about the subscripts denote physical components, and comma
denotes partial differentiation with respect to the £a system in P, when the are
defined in terms of polar coordinates (r, 6) by

^ = r/R0 , £2 = 0/2k.

Consider a shell with M a surface of revolution obtained by rotating an ellipse about
its semi-minor axis, Fig. 1. The surface M is symmetric with respect to the axis of revolu-
tion y and the closed curve which defines the edge line of M in the base plane P. If a
and b are the semi-major and semi-minor axes respectively and r is distance parallel to
the base plane from the axis of revolution to the points on M, we set L = r0 , where
r0 is the radius of the contour intersect of M and P. In the base plane P, we consider
polar coordinates r, 6 with origin at the intersection of the axis of revolution of M with P,
and define non-dimensional coordinates

£i = r/r0 ; £2 = d/2ir. (2.9)

If h is the height of the apex of M above the base plane P, then by shallow shell
approximation,
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.AXIS of REVOLUTION

2 = r - H aK2i ; z\«e = -ap eap , (2.10)
? o £

where a = b/a < 1, /3 = r0/a < 1. With the use of (2.10), Eq. (2.2) becomes:

V2W - tWV = J, (2.11)

where V3 is the Laplacian operator and

e2 = aft/X*. (2.12)

The homogeneous equation corresponding to (2.11) has the general solution \p = + ^2
where

VVt = 0, (2.13)
Va*2 - ie2*2 = 0. (2.14)

3. The basic solution: Uniformly loaded ellipsoidal shell. We consider a shallow
ellipsoidal shell of revolution loaded symmetrically with respect to its axis. The basic
homogeneous differential equations (2.13), (2.14) now involve derivatives with respect
to £1 only. In order to demonstrate the method of solution, we assume that p is constant
and that the edge is clamped. If va are the tangential components of middle surface
displacement, the continuity and boundary conditions are:

at & = 0: n0(n> , n0(22) , moai) , m0(22> , and w0 are finite;

at & = 1 (built-in-edge): v0i = w0 = w0,i = 0. (3.1)

From the general solution of (2.13) and (2.14), guided by the work of Reissner [3], and
applying (3.1) and (2.1), we obtain:

w0 = c! ber - <h bei + c3 , ^ ^

(K<t>)0 = dx ber + cx bei + pg/4Be2 ,

where
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cx = (p/X)(rj - 1) bei't, di = (p/X){n — 1) ber' e,

Cs = (ja/X)(ri — l)[bei c ber't — ber e bei' e], (3.3)

X = 2£e3[e(ber" e ber' e + bei" t bei' e) — ^(ber'2 « + bei'2 «)],

and prime denotes differentiation with respect to the argument. From Eqs. (2.4),
(2.6), (2.7) and (3.2), we compute the set of stresses { nqa0}.

In the base plane P we consider a circle C* of radius r% and center located a distance
c from the origin 0 such that < r0 — c. We define non-dimensional variables 6a in terms
of a new system of polar coordinates (r*, 8*), with pole 0* at the center of the circle
C* (Fig. 1), by

0i = r*/r\ , 02 = 6*/2t. (3.4)

The set {no", m^, go! in the system can now be transformed in the conventional
manner into the set {N^, M^, Qo! in the 0a system, represented by

J11 - —K
1J„2 , „ „ f c \ „ , c

£i I L\rV \ri + 2I I cos 2tt92 + (-j) cos ^ird2({d1 ber' e£,

+ Cj bei' eljt} + ^ sin2 2tt92{c1 ber - d, bei

Mn - —
M 0 — t3

£l
(1 — rj)(c1 ber' «Si — c?i bei' ( 0i + ~ cos 2tt62,){(«,

sin2 27r02| + e^Cj bei + dx ber «£i)

x i (0i + kcos 2*e2) + "fe)sin2 (3"5)

Equation (3.5) defines the basic solution {$0}. From Eqs. (2.8) and (3.5) we may
determine {cr0} generated by f S0} across the curve 6i = constant.

Applying the addition theorems for the Bessel functions J0(z), J'0{z) [4], corresponding
theorems for ber x, ber' x, bei x, bei' x are found to be

ber e£i = ^ An cos n2ird2 ; e£i ber' Cn cosn27r02
n = 0 n = 0

CO CO

bei eji = cos n2ird2 ; e|i bei' Dn cos n2ird2 ,

(3-6)

71=0

where at 6, = 1

A.( 1) = ( l)nen

5,(1) = (-l)n£„

ber„ — ber„ e* — bei„ — bei„ e*
f o T o

ber„ -r- bei„ e* + bei„ ber„ t*

(3.7)

with €„ = 1 if n = 0, and en = 2 if n > 0,



1065] STRESS DISTRIBUTION AROUND A HOLE 113

C„(D = 0,/2
(-1)"
2'

ilc
' /v»' 0

(ber„+i e* — Sn ber„_! e*)(bern ~ + bei,
\ T 0

+ (bei„+1 e* — 8„ bein_! e*)^bern^ — bei„ +
e C

€^C / e*c
X i (ber„+1 -j- - 8n ber„_! ^r)(bern e* + bei„ e*) + I bei„+I ~

' 0 I o ' \ To

o,d) = y?

- 5„ bei„_, ̂ /)(ber» e* - bei» «*)jJ> (3-8)

e*j(ber„+1 e* — 5„ber„_i e*)(bei„ ^ — ber„
v \ T o T o /

+ (bein+1 e* — 5n bein_! t*)(bern ~ + bein + ~-
\ r% r% )\ r*0

X |(ber„+1 ~ — S„ bern_! ^^(bei„ e* — ber„ e*) + ^bei; <rc
n+1 r%

- 5n bei„_! ~^(bern e* + bei„ e*)j ,

with 5„ = 0 if n = 0, and <5„ = 1 if n > 0. In (3.8) and (3.9),

e* = (r*oAo)e. (3.9)

Using the above addition theorems in (3.5) and neglecting (c/r*0Y compared to unity,
the required physical components of the solution {(So} (1) take the form:

NO(H) = \ E& « = — 3 LJi)
h(Fn-2 + Fn + 2) — (F„_! + Fn +,) + (Fn-S + Fn + 3)

■ cos n2ir82 + 2bJk>

■^0(12) — Tf („ * ) SK \r*,-tV \l 0/ »=-2

r0\ J ,T, TTT \ 3 / c
\^* jL ()/

,(£„_, - K+l) - | ^(^-2 - K + 2)

+ | - F„+1) - (F,_2 - F„+2)

Mo<„, —

Motw = r0B(l - „) -c- £

Iff) (1 - utfG. - ~ + G„+1)J> + e2Hn

smn2ird2 , (3.10)

cos n2ird2 ,

I o/ n= — 2 (^)2{(G„-1 - G„+1) - |

Qo(.» = ^*
0' n= — 1

■(Gn_2 - Gn+2)| + | jc^-, - Fn+1) - \ 2 - ff„+2)

sinn27r02

n
cosn2ird2 ,

}]

-E1" — 2^* (-^n-l + Fn+i)
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where En = dtCn + c,Dn , Fn = dlBn - cxAn , Gn = c1Cn - d,Dn , //„ = c,B„ + dxAn ,
and En = Fn = Gn = H„ = 0 if n < 0.

4. Solution of ellipsoidal shell with a circular hole. We now consider the ellipsoidal
shell to have a hole defined by the intersection Cj£ of the middle surface M with a
circular cylindrical surface the axis of which is parallel to but not coincident with the axis
of the ellipsoid, Fig. 1. The hole is stress free. The intersection Cf, in M projects into
a circle C of radius y in the base plane P. The center of C is located a distance c from the
axis in P. In the Qa system, the hole is defined by 0, < y/r% = y„. In a region exterior to
the circle C* of radius r%, the effect of the hole on the stress distribution is assumed neg-
ligible, appealing to the de Saint-Venant principle. The solution [ S„} is therefore valid
in this region and generates the system {<r0} (0i = 1) across the circle C*. We consider
next the region interior to the circle C*, defined by D: y0 < 8X < 1, 0 < 02 < 1. In this
region we seek a solution {$} which will satisfy (2.11) and give rise to a system {a}
such that

M(7o) = 0; M(l) = {o-o |(1). (4.1)
It follows that {$} stems from a complex function \p which satisfies Eqs. (2.11), (2.13)
and (2.14). Guided by Eq. (3.10), and using (2.1), the appropriate solutions are

w = X Ln cosn2x02 ; K<i> = X Mn cosn2ir02 + (~) > (4-2)
n=0 n = 0 4-L>€ \r0/

where

V* = [i - (tA*)T'p,
L0 = a10 + a50 ber 6*0j — a60 bei e*0x + a70 ker e*0! — aso kei a*0x ,

M0 = a20 + a40 log d1 + aeo ber e*0j + a50 bei e*0! + aso ker e*0! + a70 kei e*0i ,

(4.3)
and for n > 0

L„ = aln0" + a3ndin + a5„ ber„ e*0! — a6n bei„ e*0! + a7n ker„ t*d1 — aSn kein «*01 ,

Mn = a2„0" + aindin + a6n ber„ e*0! + a-n bei„ e*0! + as„ker„ + a7nkei„ t*6x .

(4.4)
Note that p* is defined to ensure equilibrium of the shell. It follows that

- s £
™ " T£ W §

M-i -vLm
0! el "
MnA M„

cos n2ird2 +

sin n2ird2 ,

n{22) = (r0/r*0)2 X M„,„ cosn2ir02 + 2KBe'

m(11) = -roBfe) X)
0/ n = 0

L..n + L

mn2) = r0B( ~~) (1 - t?) X n
0 / 71 = 0

^'n ^jti

e2,~ 0,

cos n2ird2

sin n2ird2 ,
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mm) = r0fi(^)2 £ vLn.n + ~ ~ cosn2,r02 ,

?u> = B(r0/r*0)3e*3 Nn cos n2ir02 ,
n=0

where

N„ = a6n ber^ e*^ + a5n bei„' e*dl + aSn ker„' e*dl + a7n kein' e*6l . (4.6)

The coefficients amn, m = 1 • • • 8, can now be found by computing {cr} from (2.8) and (4.5)
and applying (4.1) with the use of (3.10). For any value of n > 1, amn follows as the
solution of an eighth order system of linear algebraic equations. For n = 0, m(12) =
W(i2) = 0, and gd) = 0 at ya is satisfied identically; hence solution of a fifth order system
is required with aI0 indeterminate.

5. Alternative solution: Residual problem. The order of the set of algebraic equa-
tions which yield the constants may be reduced by treating the problem as a residual
one in which interest is restricted to the neighborhood of the hole. We redefine 0! = r*/y
such that the hole is specified by 0i < 1 and the region exterior to the hole is given by
1 < < r*0/y. We now replace (r%/r0), (c/r%) by (y/r0), (c/y) respectively in our
previous work.

In our addition theorem, noting that t*c/r% = tc/r0, we write

e* = ty/r0 = e**(y/c)] e(c/r0) = «**. (5.1)

In (3.7) and (3.8), we, therefore, replace e* by e**, c/r% by y/c. We now evaluate the
set {iVo(a/S) , M0(a/3) , Qo(a)} at the boundary of the hole 6j = 1. Neglecting (y/c)2 com-
pared with unity, and applying the modified (3.7) and (3.8) to the modified (3.5),
we obtain

-4 £:{!(?)(En_2 + En+2) - 2^J(£'n_3 + En+S)

Fn - Wn-2 + Fn+2) - | (yCK-! + Fn+1 - Fn-3 - Fn+3)

■ co.s n2ir02 + 2Bt2K' (5-2)

■^o(i2)(l) — ^2
n= —3

e
2

Mom)(l) = Br0 ±

2K {\c

+

(£„_2 - En+2) - 2l1)(En-3 - E„+3)

(Fn_2 - Fn+2) + Q(^„-. - Fn+1 - Fn.3 + Fn+a) }■ sin n2ird2 ,

1 ~ v\(r0
((?„_ 2 + Gn+2) + 2^((?„ — Gn-i — Gn+1 + \Gn-2

2

I 2 Gn + 2 Gn—3 Gn-\. 3) [— ̂ (1 + r))Hn + ( -J(Hn-2 + Hn+2)

+ + F»+i -H-3 - H-+a) cos n2ir62 ,
(5.2)
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Mo(12)(1) = Bro{\ v) nE |(^)' (Gn_2 - Gn+2) - 2ft)((?._, - (?„+3)

+ e2 (tf„_2 - tf„+2) + (")(#„-! - ff„+1 - //„-3 + #„ + 3) sin n2ird2 ,

(£„_, + #.+ l) - I ̂  + K+2) cos w27r02

Equations (5.2) yield the traction system {<r0} (0i = 1) generated by the basic solution
{S0 J at the hole. We seek a residual solution {Sb} which satisfies (2.11) in 1) and gives rise
to a system {ad J such that

M(e1 = 1) = {o-o}(<9i = 1); lim {<Td} = 0. (5.3)
6 1—»oo

The second of (5.3) requires that we discard in solutions 0" and in <p2 solutions H(n2) (z).
Hence in (4.3) we set a50 = a60 = 0, in (4.4) alB = a2n = a3n = a6„ = 0, and modify
these expressions by replacing e* by e**y/c. Similarly, we modify (4.2) and (4.5) by
replacing r% by y, e* by e**y/c. For n > 1, the coefficients amn , m = 1, 2, 3, 4 are found,
on applying (5.3)i , by solving a fourth order system of linear equations. For n = 0,
there are three constants to be determined by specifying ndin> , mdm) , qdW . The re-
quired solution is then {£} = {(S0} — ! S,t j.

6. Some numerical results and discussion. The solution of the residual problem
treated in the previous section was applied to obtain the stress distribution in the
neighborhood of a hole with y/r0 = 0.1. Two other parameters were also specified: e,
a measure of the shallowness of the shell (as e approaches zero, we have plate behavior)
and c/y, a measure of the location of the hole relative to the axis of revolution. Two
values of each were chosen: e = 1.1, 4.0; c/y = 0, 3. In all cases, then, the hole is located
away from the boundary layer. The value of 0.3 was assigned to 17. The following di-
mensionless stresses were defined:

* _ (t/ro)n(aB) * _ m(g)j) # _ ,
n(a/3) , — 2 > 2(a) — 1 (a)/"oV (3) •

'oP (3) U>P(3)

Tables 1 and 2 give the values of nf22) , mf22) and gf2) at the edge of the hole 0X = 1.0,

Table 1. e = 4, y/r0 — 0.1 Values of Nonvanishing Stresses at the Boundary of the Hole, r*/y = 1

»?22) X 102 X 102 * , X 102Q(.2)

c/y = 3 c/y = 0 c/y = 3 c/y - 0 c/y = 3 c/y = 0

17.882 21.340 -1.6381 -1.6402 0.71275 0.0

x/4 18.826 21.340 -1.5910 -1.6402 0.72150 0.0

ir/2 19.538 21.340 -1.6054 -1.6402 0.26719 0.0

3«-/4 20.313 21.340 -1.6207 -1.6402 -0.09751 0.0

20.875 21.340 -1.6721 -1.6402 -0.19281 0.0
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Table 2. e = 1.1, y /r^ = 0.1 Values of Nonvanishing Stresses at the
Boundary of the Hole, r*/y = 1

X 102 X 102 ?f2> X 102

c/y = 3 c/y = 0 c/y = 3 c/y = 0 c/y = 3 c/y — 0

9.2014 10.972 -10.687 -14.090 19.709 0.0

x/4 9.2663 10.972 -11.036 -14.090 25.255 0.0

7I-/2 9.6251 10.972 -11.649 -14.090 19.161 0.0

*74 10.647 10.972 -12.227 -14.090 15.791 0.0

10.677 10.972 -13.581 -14.090 9.837 0.0
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when € = 4 and 1.1 respectively. In Figs. 2 and 3, mf22) and nf22) are plotted as functions
of r*/y for e = 4, d* = tt. The dashed curve gives the variation when there is no hole.
These stresses have a maximum value at the edge of the hole and become asymptotic
to the respective no-hole solutions. A similar behavior will occur for 6=1.1

We use the value at the apex of the basic solution as a reference to define stress con-
centration factors kb , km :

'^ \ W *(22,(0) ' 71*22) (0) J 7 '

We obtain

lh , K\ = *\ , -» for -C = 3.^0(22)0, 7r) 710(22) ) T!") T

r
FIGURE 3
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Increasing c/y from 0 to 3 results in decreased values of kb and km for a particular value of
e. An exception occurred for kh when e = 4. A re-examination of the basic solution {S0 |
showed that rn(*(22) had a wave behavior near the apex and that its greatest absolute
value occurred nearer the edge of the hole than the apex. This would explain the increase
of kb in this case. Finally, we note that the bending factor, kb , increases as e increases,
although the magnitude of the bending stresses decreases. Similarly, the membrane
factor, km , increases as e decreases, although the magnitude of the membrane stresses
decreases.
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