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STRESS DISTRIBUTION AROUND A HOLE IN AN ELLIPSOIDAL SHELL*

By
C. N. DE SILVA anp H. COHEN (University of Minnesota and Honeywell Research Center)

Summary. This paper treats the stress distribution in an ellipsoidal shell of revolu-
tion with a hole. The problem is reduced to the solution of sets of eight simultaneous equa-
tions. If interest is restricted to the neighborhood of the hole, a simplification occurs
requiring the solution of sets of four simultaneous equations.

1. Introduction. The problem of determining the stress concentration caused by
holes in thin shells is a basic one which has not, however, been amenable to solution.
The complicated differential equations governing the deformation have been the main
source of trouble. Lur’e [1] gave a solution for the case of a hole in an infinitely long
closed circular cylindrical shell using the equations of shallow shell theory. His solution
was developed in terms of a “curvature” parameter and in the limiting case when the
latter vanished, the solution reduced to the generalized plane stress distribution in the
neighborhood of a hole in an infinite plate under bi-axial tension.

The present paper treats the stress distribution in an ellipsoidal shell of revolution
with a circular hole the axis of which is parallel to the axis of revolution of the ellipsoid.
The linear shallow shell theory of Green and Zerna [2] is suitably modified to constitute
the framework of the problem. The method of solution is quite general and may be
applied to any type support condition with an arbitrary surface loading. Specifically,
in the interests of demonstrative results, the outer edge is assumed clamped and the
loading uniform.

From the work of Reissner [3], a basic solution {S,} is given, which solves the problem
for the domain without a hole. By an extension of the addition theorems for Bessel
functions [4], {S,} is used as a guide to choose directly the solution {S} which satisfies
all the required mathematical conditions. The problem is reduced to solving sets of
eight simultaneous algebraic equations.

Finally, if interest is restricted to the neighborhood of the hole, a residual solution {S,}
is deduced such that the required solution is {S,} + {S.}. The problem now involves
solving sets of four simultaneous equations.

2. The basic equations. Following Green and Zerna [2], the deformation of a shallow
shell may be expressed in terms of a complex function y

¥ = w + Ko, 2.1)
which satisfies the differential equation
™" Y upy, + (B/N)e*E 2| as¥ ],y = p/B, 2.2)
where
N o= N12(1 — )]Y%, N = t/L, B = ENL/12(1 — 7). (2.3)
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Here, ¢ is the thickness of the shell, L is the smallest characteristic length of its middle
surface M, E, 3, are Young’s modulus and Poisson’s ratio respectively, Lz is the distance
of M from a base plane P, the bar before a subscript denotes covariant differentiation
with respect to the metric tensor e of a £, coordinate system defined in P, p is related
t0 P, , the physical component of the load normal to M, by Lps, = p, and e is the
permutation tensor. In (2.1), w is the component of the displacement vector perpendic-
ular to M, ¢ is a function from which the membrane stress n is generated by:

n* = 7, (2.49)
K = [120 — #)*/NE L. (2.5)
The couple tensor m and the shear stress vector q are given by
m* = —BH"w|,, ;  ¢* = m’*/B, (2.6)
where
HP = L{e™e® + e®%™ + n(e* e’ + *%¢')}. 2.7

It is not too difficult to show [5] that for stress boundary conditions we specify, along
a curve C in P, the traction system {o} :

e, e _a_@.}
{a}_{n Uea 5 q Uq 38’G’

11 Leﬂ)\ m uau ) [ L“z u‘"“ﬂ ’

u is the unit normal to C and d/ds is the derivative along the tangent to C. If we choose
C to be £ = constant, then

Mag .2

{o} = {n(u) yNaz 5 oy — 271'21Ro; m(u)}, (2.8)

where the parentheses about the subscripts denote physical components, and comma
denotes partial differentiation with respect to the £, system in P, when the £, are
defined in terms of polar coordinates (r, 8) by

¢ =r/R,, £ = 0/2m.

Consider a shell with M a surface of revolution obtained by rotating an ellipse about
its semi-minor axis, Fig. 1. The surface M is symmetric with respect to the axis of revolu-
tion y and the closed curve which defines the edge line of M in the base plane P. If a
and b are the semi-major and semi-minor axes respectively and r is distance parallel to
the base plane from the axis of revolution to the points on M, we set L = r, , where
o is the radius of the contour intersect of A/ and P. In the base plane P, we consider
polar coordinates r, § with origin at the intersection of the axis of revolution of M with P,
and define non-dimensional coordinates &,

&L =r/ro; & = 0/2m. (2.9)

If h is the height of the apex of M above the base plane P, then by shallow shell
approximation,
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— ezl = —aBeus, (2.10)
where « = b/a < 1, 8 = 7,/a < 1. With the use of (2.10), I£q. (2.2) becomes:

VIV — iy = L, @.11)
where V? is the Laplacian operator and
€ = aB/\*. (2.12)

The homogeneous equation corresponding to (2.11) has the general solution ¢ = ¢, + ¢,
where

Vi, =0, (2.13)
Vi, — i€y, = 0. (2.14)

3. The basic solution: Uniformly loaded ellipsoidal shell. We consider a shallow
ellipsoidal shell of revolution loaded symmetrically with respect to its axis. The basic
homogeneous differential equations (2.13), (2.14) now involve derivatives with respect
to £, only. In order to demonstrate the method of solution, we assume that p is constant
and that the edge is clamped. If v, are the tangential components of middle surface
displacement, the continuity and boundary conditions are:

at & = 0: noyy , Moce2y , Moany 5 Mocazy , and w, are finite;

at ¢ = 1 (built-in-edge): Vor = Wy = Wo,, = 0. 3.1)

From the general solution of (2.13) and (2.14), guided by the work of Reissner [3], and |
applying (3.1) and (2.1), we obtain:

w, = ¢, ber e, — d, bel e, + ¢; , 3.2)
(K¢)o = d, ber €, + ¢, bei e, + pti/4Be

where
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1 = (/X)(n — Dbei"e, dy = (p/X)(n — 1)ber’,
= (p/X)(n — 1)[bei e ber’ ¢ — ber e bei’ €], (3.3)
X = 2Bé[e(ber’’ e ber’ € + bei’’ ebei’ €) — n(ber’”” ¢ + bei’” ¢)],

and prime denotes differentiation with respect to the argument. From Egs. (2.4),
(2.6), (2.7) and (3.2), we compute the set of stresses { ng®mg? ¢%}.

In the base plane P we consider a circle C* of radius r% and center located a distance
¢ from the origin O such that r* < r, — ¢. We define non-dimensional variables 6, in terms
of a new system of polar coordinates (r*, 6*), with pole O* at the center of the circle
C* (Fig. 1), by

6, = r*/r% , 0, = 6*/2r. (3.4)

The set {ng?, mZ?, ¢5} in the £, system can now be transformed in the conventional
manner into the set {Ng?, M&?, Q%} in the 6, system, represented by

2
n_ £ [El {01 + 201( ) cos 270, + (%) cos 4#02}{d1 ber’ e,
1 [

o

2 2
+ ¢, bei’ ¢} + E% (;c%) sin® 2r6,{c, ber &, — d, bei ¢,} + 2553 (—%") :‘,

2
L [(1 — )(e, ber’ e, — d, bei’ eEJ{(Gl + :—* cos 27r02)
0

2
- (%) sin’ 27"02} + et,(c, bei e, + d, ber eél)

0
c 2 ¢ 2
X {(01 + % ©0S 21r02> + "(F) sin® 2702}]. 3.5)
0 0

Equation (3.5) defines the basic solution {S,}. From Igs. (2.8) and (3.5) we may
determine {o,} generated by {S,} across the curve §, = constant.

Applying the addition theorems for the Bessel functions J,(2), J4(2) [4], corresponding
theorems for ber z, ber’ z, bei z, bei’ z are found to be

Z A, cosn2wl, ; ek, ber’ e, = Z C, cos n2xr0, ;

ber ¢, =

n=0 n=0 (36)
bei e, = Z B, cosn2x0, ; e, bei’ e, = E D, cos n2r6, ,

n=0 n=0

where at 6, = 1

*
4,1) = (- 1)"e,.[ber,, - ber, ¢* bei,,:chei,, e*:l,
¢ (3.7

B,(1) = (—1)"e,.[ bel,. -|—be1 ber,. ],

withe,.=1ifn=0,ande,,=21fn>0,
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(=" " e*c

C.(l) = S| € (ber,., €¢ — 8, ber,_; €*) bern— -+ bei, — e
*
+ (bein., & — 8, bei,_, e*)(ber,. ;ﬁ bei, :-;)} + £°
* *C
ber,,+l r’}; -4, ber,._l e )(ber e + bei, ¢*) + (beln.” -

. €*c * -
— 4, bei,_,; ey (ber, ¢ — bei, ¢*)¢ |, (3.8)
e*c

n *
D.(1) = (21,12) [e*{(ber,,+1 e — 6, ber,_, e*)(bein % — ber, T>
r% r

[

+ (bei,,, e — 8, bei,_; € )(ber,, — + bei, -——)} + &£
* *C
(ber,.+l == — 4, ber,._l - )(bel e* — ber, ¢*) + |bei,.,
o o

. €% .
— 4, bei,_, ;;)(ber,. e* 4+ bei, e*)}:l,
0
with 6, = 0if n = 0,and 8, = 1 if n > 0. In (3.8) and (3.9),
= (rb/ro)e. (3.9

Using the above addition theorems in (3.5) and neglecting (c/r%)* compared to unity,
the required physical components of the solution {S,} (1) take the form:

1 & 7o\ c efcY
No(u) = En_z_s 7';0 E, — ;,;0 (En—l + En+l) - '5 7'_*6

.{Fn - %(Fn—2 + Fn+2) - 52—’5 (Fn—l + Fn+l) + #;5 (Fn—3 + Fn+3)}:|

-cos n2r0, + 2—37—2—2-—,,
—1 C = 2 p] 3 v !
Nogyy = _I?' <7—(‘;0> n=E—2 [(f%) {(En—l —E..,) — 5 <f§0>(hn—2 - 15n+2)}
2
¢ {(pn_, — Fa) — g (Fus = F,,+2)}] sin n2r6, | (3.10)
0

My = 1oB Z |:< ) 1 - 77){ ;C; Gy + G,,“)} + ezfln] cos n2rb, ,

n=-1

wm=(3) 2 [ (2) {(G"-‘ - -3(3)

2
Gz — GM)} + ‘5{<Hn-l — H,) =

-sin n2xr 4,

QO(l) = Bez(%> Z [En - 2_i;0 (En—l + En+l)] cos n27|'01 )

0/ n=-1

]‘10(12)

(fT,)(H" 2 — H,.+2)}]

1O =
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where £, = d,C, + ¢,D, , F, = d,\B, — A, , G, = ¢,C, — d\D,,H, = ¢,B, + d,\A,,
andE, =F,=G,=H,=0ifn <O0.

4. Solution of ellipsoidal shell with a circular hole. We now consider the ellipsoidal
shell to have a hole defined by the intersection C# of the middle surface M with a
circular cylindrical surface the axis of which is parallel to but not coincident with the axis
of the ellipsoid, Fig. 1. The hole is stress free. The intersection C} in M projects into
a circle C of radius v in the base plane P. The center of C is located a distance ¢ from the
axis in P. In the 8, system, the hole is defined by 6, < v/7% = v, . In a region exterior to
the circle C* of radius r%, the effect of the hole on the stress distribution is assumed neg-
ligible, appealing to the de Saint-Venant principle. The solution {S,} is therefore valid
in this region and generates the system {o,} (§, = 1) across the circle C*. We consider
next the region interior to the circle C*, defined by D:v, < 6, < 1,0 < 6, < 1. In this
region we seek a solution {S} which will satisfy (2.11) and give rise to a system {o}
such that

(o)) = 0;  {o}(1) = {au}(D). @.1)

It follows that {S} stems from a complex function ¥ which satisfies Eqgs. (2.11), (2.13)
and (2.14). Guided by Eq. (3.10), and using (2.1), the appropriate solutions are

@ © *pn2 %\ 2
w = Z L, cos n2r0, ; K¢ = Y, M, cosn2r6, + Lo; <Q> R 4.2)
n=0 n=0 4Be To
where

p* = [1 — (v/r)17'p,
Lo = a, + a5 ber €0, — ag bel €¥0, + a;, ker €40, — as, kel e*6, ,
M, = as + ai log 8, + ae ber €¥6, + as, bei %0, + aso ker €¥60;, + a; kei €*6, ,
| 4.3)
and forn > 0

L, = a,,67 + a:.0;" + as, ber, €0, — ag, bei, ¢¥6, + a-, ker, €0, — as, kei, €*6, ,

M, = a,,67 + a,,0," + as. ber, €0, + a;, bei, e¥0, + as. ker, e¥0, + a;, kei, ¢*6, .

(4.4)
Note that p* is defined to ensure equilibrium of the shell. It follows that
1 2 © Mn 2 %
Nay = K (:_%) '; [—01'1 - %? M,.:' cos n2w0, + —QIgBez’
2 @
Ny = % (%) > n[MB—"—‘ — %[z—":l sin n2r6, ,
0 n=0 1 1
1 *)2 S p*
N(22) = K (ro/r%) ZO M., ., cosn2r, + —276?2’ 4.5)
2 o Ln 2
Mmay = _TOB(;%) Z |:L,.,u + 77{ 0'1 — 1—;5 L,,}il cos n2xw 6, ,
0. n=0 1 1

z - L., L, .
Mazy = TOB(%) a-m9 Zon[—0§ - 9'1] sin n2w6, ,
n= 1 1
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2 o 2
M22) = roB(%) Z I:nL,.,u + Ln'l - @—é‘] Ccos n21r€2 ,
70 01 01

n=0

qay = B(ro/r%)’** > N, cos n2x6, ,

n=0
where
N, = as, berl ¥0, + as, bei, e*0, + as, ker,! e*0, + a., kel ¢*0, . (4.6)

The coefficients a.,,, m = 1 - - - 8, can now be found by computing {s} from (2.8) and (4.5)
and applying (4.1) with the use of (3.10). For any value of n > 1, a,, follows as the
solution of an eighth order system of linear algebraic equations. For n = 0, m, =
Nay = 0, and qu, = 0 at v, is satisfied identically; hence solution of a fifth order system
is required with a,, indeterminate.

5. Alternative solution: Residual problem. The order of the set of algebraic equa-
tions which yield the constants may be reduced by treating the problem as a residual
one in which interest is restricted to the neighborhood of the hole. We redefine 6, = r*/y
such that the hole is specified by 6, < 1 and the region exterior to the hole is given by
1 < 6, < r%/y. We now replace (r%/r,), (¢/v%) by (v/r0), (¢/v) respectively in our
previous work.

In our addition theorem, noting that e*c/»% = ec/ro, we write

e = ey/ro = e¥*(v/c); elc/ro) = €**. (5.1)

In (3.7) and (3.8), we, therefore, replace ¢* by **, ¢/r% by v/c. We now evaluate the
set {Nocapy » Mocapy , Qocar} at the boundary of the hole 8, = 1. Neglecting (y/c)* com-
pared with unity, and applying the modified (3.7) and (3.8) to the modified (3.5),
we obtain

Moo = & SO ] s+ i - 2 s + 5.0

2

1 )
- S2‘ |:Fn - %(Fn—Z + Fn+2) - "2‘ (%)(Fn—l + I’n+1 - Fn—3 - F»+3)]}

-cos n2r 6, + (5.2)

_p_
2B€K’

Noan(l) = —% i3 {( ) [(E,, s — Eus) — 2(%)(&._3 - EM)]
£ o s = ) 4 (s~ Fros — P ma]} sin n2n0,

©

Moun(1) = Br, Z

n=-3

(1 2 [(On- + Gn+2) + 2( )(G - Gn-l-l + % n—2

2
+ %Gn+2 - Gn—s - Gu+3) + % [(1 + U)H + < )(Hn 2 + Hn+2)

+ (l = n>(1>(Hn—l + Hn+l - Hn-3 - H""‘?)]} cos n27l'02 ’
2 c
(5.2)
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Moo (1) = B"’(l D 3 {(r) [(G s = Go) — 2( )(Gn . Gn+3):|

n=-3

+ 52[(Hn—2 - Hn+2) + (%)(Hn—l —H,., — H,.; + Hn+3)]} sin n2w 6, ’

Qony(1) = 1?762 (%) i [(E..-l + E,...) — (%)(En-z + Em)] cos n2r o, .

n=-—2

Equations (5.2) yield the traction system {o,}(6, = 1) generated by the basic solution
{S,} at the hole. We seek a residual solution {S,} which satisfies (2.11) in D and gives rise
to a system {o;}such that

{ca}(8, = 1) = {ao}(8, = 1); hm {es} = 0. (5.3)
The second of (5.3) requires that we discard in ¥, solutions 6} and in ¥, solutions H{ (2).
Hence in (4.3) we set as0 = aso = 0, in (4.4) a1, = @2, = @5, = @, = 0, and modify
these expressions by replacing ¢* by e**y/c. Similarly, we modify (4.2) and (4.5) by
replacing 7% by v, €* by e**y/c. For n > 1, the coefficients a... , m = 1, 2, 3, 4 are found,
on applying (5.3), , by solving a fourth order system of linear equations. For n = 0,
there are three constants to be determined by specifying na1) , Maany , Qaciy - The re-
quired solution is then {S} = {S,} — {8.}.

6. Some numerical results and discussion. The solution of the residual problem
treated in the previous section was applied to obtain the stress distribution in the
neighborhood of a hole with v/r, = 0.1. Two other parameters were also specified: ¢,
a measure of the shallowness of the shell (as e approaches zero, we have plate behavior)
and c/y, a measure of the location of the hole relative to the axis of revolution. Two
values of each were chosen: e = 1.1, 4.0; ¢/y = 0, 3. In all cases, then, the hole is located
away from the boundary layer. The value of 0.3 was assigned to 5. The following di-
mensionless stresses were defined:

ntapy = (t/—:(;zl(%@; meap = gﬁz_;)%’ 0ty = G /TP -
Tables 1 and 2 give the values of n¥%,, , m¥,, and ¢%, at the edge of the hole 6, = 1.0,
TaBLE 1. € = 4, v/ro = 0.1 Values of Nonvanishing Stresses at the Boundary of the Hole, r*/y = 1
0* nlaey X 107 My, X 102 gl X 10

c/v =3 e/y =0 c/v =3 e/y =0 c/y =3 c/y =0

0 17.882 21.340 —1.6381 —1.6402 0.71275 0.0

/4 18.826 21.340 —1.5910 —1.6402 0.72150 0.0

/2 19.538 21.340 —1.6054 —1.6402 0.26719 0.0

3n/4 20.313 21.340 —1.6207 —1.6402 —0.09751 0.0

L 20.875 21.340 —1.6721 —1.6402 —0.19281 0.0
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TaBLE 2. € = 1.1, v/ro = 0.1 Values of Nonvanishing Stresses at the
Boundary of the Hole, r*/y = 1
0* n¥, X 107 m¥yy X 102 q¥%, X 102
c/y =3 c/y =0 c/y =3 c/y =0 c/y =3 c/y=10
0 9.2014 10.972 —10.687 —14.090 19.709 0.0
w/4 9.2663 10.972 —11.036 —14.090 25.255 0.0
/2 9.6251 10.972 —11.649 —14.090 19.161 0.0
/4 10.647 10.972 —12.227 —14.090 15.791 0.0
s 10.677 10.972 —13.581 —14.090 9.837 0.0

FIGUR

™y

2
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when e = 4 and 1.1 respectively. In Figs. 2 and 3, m%,, and n%,, are plotted as functions
of r*/y for e = 4, 6* = 7. The dashed curve gives the variation when there is no hole.
These stresses have a maximum value at the edge of the hole and become asymptotic
to the respective no-hole solutions. A similar behavior will occur for e = 1.1

We use the value at the apex of the basic solution as a reference to define stress con-
centration factors &, , k., :

mhay (1, 7))  nky , (1, 7) c
k km — { (22)\1) ( ) ) fOI‘ Z = 0
{ v } ME20y(0) ’ %32y (0) Y ’
m¥ay (1, ™) n¥y , (1, ) c
k km — (22)\1, (22) » ) fOl' ~ = 3
{ v } MYyen(B, ™)’ 1@, Y
We obtain
€ | ke l km
c/y = c/y =0 c/y =3 c/y =0
4.0 1.941 1.904 1.952 1.996
1.1 1.723 1.787 2.167 2.227

®© I M
"
(<]
o

FIGURE 3
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Increasing ¢/ from 0 to 3 results in decreased values of k, and k,, for a particular value of
e. An exception occurred for k, when e = 4. A re-examination of the basic solution {S,}
showed that m#,,, had a wave behavior near the apex and that its greatest absolute
value occurred nearer the edge of the hole than the apex. This would explain the increase
of k, in this case. Finally, we note that the bending factor, k, , increases as e increases,
although the magnitude of the bending stresses decreases. Similarly, the membrane
factor, k,, , increases as e decreases, although the magnitude of the membrane stresses
decreases.
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