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difference METHODS FOR A NON LINEAR ELLIPTIC SYSTEM

OF PARTIAL DIFFERENTIAL EQUATIONS*

By G. T. McAllister, (The University of Wisconsin, Madison, Wisconsin)

Abstract. This paper proves the existence and uniqueness of non-negative solutions
to the Dirichlet problem associated with the nonlinear elliptic system

m

Awt = bk XX u"(n< k = 1, ■ ■ ■ , m (*)
1=1

where the bk and the Dirichlet data uk = <pk are non-negative.
An iteration scheme is proposed for solving the difference equations associated

with (*) and a bound on the error between any iteration and the solutions to the difference
equations is established.

1. Introduction. In [1], Ablow and Perry present iterative methods for solving
the Dirichlet problem—over a plane region 0—associated with the equation Au = u2.
They were motivated, in part, by a desire to solve the Dirichlet problem for the equation

Auk = bk flu"(n, k = 1, ••• ,m, (1)
1=1

with Dirichlet data uk = <pk . Here, bk are non-negative real numbers, n(l) positive
integers, and n = n(l). This equation gives the concentration u{ of the i-th labile
species in an n-th order, diffusion supported, chemical reaction.

The present paper proves the existence of a unique positive solution of (1) and
presents a discretization of an extension of the iterative methods posed in [1], We shall
also discuss some difference methods for the problem

A u = u2n in fi, with u = <p on dft, (2)

which is a special case of (1).
2. The continuous problem. In this section we shall prove existence and uniqueness

of a positive solution of (1). [Note that equation (2) is a special case of (1)]. For con-
venience of notation we shall assume that m = 3 in the proof.

Theorem 1. If bk > 0 and <pk > 0, then there exists one and only one non-negative
solution of (1). Moreover,

max \uk\ < max \tpk\.
a da

Proof: (Uniqueness) Let , u2 , u3 and y, , i>2 , v3 be two distinct sets of solutions
to (1) with uk and vk non-negative. Then
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•A(wt = bk\u2 )Uz 'Pn(i)-i(wi , )(ui v:)

"4" fi' '^3* >Pn(2)-i(Ui i V2)(lt2 P2) "I- Vi W2( 'PnOj-iCWa , V?)(u3 %)]> (3)

where Pm(£, v) = We observe that all the coefficients of (uk — v„) in the
right-hand side of (3) are non-negative.

Let = {(x, y) : uk(x, y) — vk(x, y) > 0} and 0,+23 = {(x, y): right-hand side of
(3) > 0}; in a similar manner—using strict inequality—we define 0* and Of23 . We see
that U+k Q~k = <£, 30 +k = 30* , etc.

Since uk — vk — 0 iff Ui — Vi = 0, then the Maximum Principle ([2], p. 326) shows
that (x, y) e 0 * W dQ~k for all 7c. Hence 0^23 C (Qk U 30 k). By analogous reasoning
■or23 c f\ u 30*).

If (x, y) e f\(0* \J 30 j), then (x, y) t 0^ . Hence,

or23 c n (o,+ w doi) c or23 •
k

Since 0723 0*23 = 4>, 0^23 = 4>- Change in the sign of the above shows that 0,+23 = <fi.
Thus uk — vk = 0 for all k and we have a contradiction on the distinctness of the elements
Ui , u2 , u3 and Vi , v2, v3 .

The estimate maxa \uk\ < maxaa \tpk\ is established by applying the Maximum Prin-
ciple to the equation

A(uk - hk) =

where hk is the harmonic function taking on the values tpk on 30.
(Existence) Let us denote by kC+t(2) the set of functions that are continuous and

non-negative on 0, are equal to <pk on 30, and have I continuous derivatives in 0.
Let Bk denote the subset of kC+0 such that its elements £ satisfies maxn |£| < maxja \iph\.

Let e kC o . Let , • • • , £3) be the solutions to the equations, with = <pk on 30,

A**(£, ,•••,&) = , (4)

where the Laplace operator A is taken with respect to the independent variables x and y
and the indicies i and j are distinct from k. Then, maxB |$fc(£i , • • • , £3)| < max3n \<pk\.
Therefore is defined on Bk and maps Bk into itself. Moreover, $k has Hoelder con-
tinuous second derivatives.

The set Bk is a convex, closed and compact subset of kC+0 . The mapping is a
continuous function of £i , §2 , £3 . The Schauder Fixed-Point Theorem (Courant and
Hilbert [2], p. 357) establishes the existence of at least one solution to (1).

3. Approximate difference equations to (2). Place a square grid on 0 with grid
width h. The grid points are expressible in the form (mh, nh) with m and n taldng on
integer values.

Let Pi = (x0, y0) be a grid point. The neighbors of P<, denoted by P,-„(v — 1, • • • , 4),
.are the points of the form (x + h, y), (x — h, y), (x, y + h), and (x, y — h). Let Qh
consist of those grid points each of which has all of its neighbors in 0. Let 30,, denote
the boundary of 0A, i.e. those grid points in 0 which have at least one neighbor outside 0.

We place a lexicographic ordering on the points of 04 and denote these points by
P1 , • • • , PN . The points of 30A are denoted by Pw+1 , • • • , PM •

For a function f(x, y) defined on 0, we denote by /,• the value of / at P<. The quantity
t|| • || denotes the maximum of the absolute values of the components of a vector.
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The continuous iterative methods presented in Ablow and Perry [1] may be written
in difference form, using the five-point approximation, as:

Aft (m) —

Ai>U{m) W(m_u£/(m) = 0,

where Ahf( = h~2 {E* /,, — 4/<}, U is used to represent a vector, u represents the
continuous solution and ' distinguishes between the vector solution of (5.1) and (5.2).

The above equations assume that the function w(m_u is known. If this were the
case, there would be little need for the difference equation. Hence, we replace M(m_n by
its "approximate" or U'(m_v ; the resulting equation we will call an approximate
difference equation.

The approximate difference equations may be written in matrix form as

U(m—i) *"{-

where the Laplace matrices L, L[m_„ have as their (k, I)—entry the coefficient of U{m), ,
U[m)l-—the subscript I denotes the Z-th component of the vector U(m)—when (5) is
evaluated at Ulm)k, U'(m)k and the boundary matrices <7(m), a'(m) have as their (I, j)—entry
the coefficient of the j-th boundary point when (5) is evaluated at U(m)i , U[m)l .

Lemma. If <p > 0, the following are true:

a) (j(m) = a[m) = o- < 0 for all m.
b) If Z)(!) denotes the diagonal matrix having its (i, i)—component given by ,

then L[m) = L—DiU'2"-1).
c) — L is monotone.
d) Let G = L_1 and T" = G"a'!. Then, for all i, E,■ r,# = 1.
e) If <p > e > 0 and 8e > ||v>||2n d2, then U(m) < Uw and t/(m) > 0.
f) -L[m) is monotone, U[m) > 0, and if G[m) = L[~] , then 0 < X). - G'L'> <

E. - G".
Proof, a) and b) follow from the definitions of <r(m) , a'm) , and L'im)
c) The row-sum criterion, sign distribution, and irreducibility hypothesis of Collatz

([3], p. 45) are satisfied.
d) Let Vi = r1'. Then V{ satisfies the difference problem AAV,- = 0 for

i = 1, • • • , N with Vj = 1 for j = N + 1, • • • , M. From the uniqueness of Laplace's
difference problem we conclude that V{ = 1 for all i.

e) Equation (6) shows that
M

ufm) = E G"u?n-». + D r'Vi. (7)
i —N+l

For m = 1, 0 < e < Ua) < 11^>| |. If we assume that one component of 0, say the x-
component, lies in the strip 0 < x < d, then (Bers [4], p. 231) 0 < — G" < d2/8.
Therefore,

M

um > -d2M2n/8 + e £ r" > o.
i-N+i

From the equation Ah(Uw — Uw) = U2", , we conclude—since Um — U(1) = 0 on
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dQk—that Uw > Um > 0. The equation Aa(£/(3) — Um) = U\2) shows that Uw > 0.
Induction produces the desired result.

f) Again we have that U'a) > 0. Hence, reasoning as in c), — L'm is monotone.
Since XJ'm = L'^atp > 0, —L[3) is monotone. The first result now follows by induction.

Let T) be the iV-component vector with each entry one. Then

(-LUi-LW'v = V< [I + DIU'^H-Ly'h = (-LUK-O'J.
Therefore, £s - G& < - G".

We shall now show that the sequences {U(m)} and {U'im)} converge.
Theorem 2. a) If <p > e > 0 and 8e > d2 ||<p||2n, then is a convergent

sequence
b) If <p > 0, then {U'(m)} is a convergent sequence.
Proof, a) The vector Ulm+1) — U(m_D = 0 on d2h and satisfies in O,, the equation

&h(Uim + l) = (?7(m) U (,m-2))P2n-i(U (m) > U(m-2)) .

If m is odd, U{m) — f7(m_2) < 0. Since Uand U(m-2) are non-negative, U(m+1) —
U(m-D > 0. Hence, {U(2m)} is a non-decreasing sequence and {U^m+v} is a non-increasing
sequence. Hence, both converge to solutions of the equation AhU — U2n. Once we show
the uniqueness of a solution to this equation we have the equality of the limits.

Let V and W denote the limits of {U {2m)} and {Ui2m+1)} respectively. Then V < W.
Therefore, the equation Ah(W — V) = (IF — V)P2„-i(W, V) implies that W < V,
i.e. V = W.

b) The vector W{m) = U{m) — C/'m_u = 0 on dQh and satisfies the equation

Ahw{m) -

Since U'(m_n and U[m_2) are non-negative, W'(m) has sign opposite to W'(m_v with
W{d > 0. The vector V[m) = U'm) — U'im_2) is zero on dQA and satisfies the equation

A„FU - U'2::^V[m) = U'^V'^P^iU'^ , u{m-3)).
Since U'm > 0, we conclude that {U[2m)} is a non-decreasing sequence and {C/'2m+1)}
is a non-increasing sequence. Hence, they both converge to a solution of the difference
equation AhU = U2n with

U[2n) < U < U[2m+l) .

Remarks, a) If we considered the equation Au = bun with b > 0, then the condition
needed to prove that Z7(m) >0 becomes 8e > bd2 \\4>\\2n.

b) Greenspan [5] has discretized an iterative scheme posed by Pohozaev [6] of the
form Att(„) — 2u(m-i)ulm) = which leads to a monotonically decreasing sequence
{«(„>}. The associated approximate difference equations have a sequence of solutions,
say {F(„)}, that converges monotonically to a solution of the difference equation
AhV = V2. However, one is not able to obtain an estimate for the ||F — F(m)||. The
method presented in this paper shows that \\U — f7(m)|| < — t/(m_i)||. This is a
definite advantage.

c) The convergence of the solution of the difference equations to the differential
equation proceeds as in Bers [4].

4. An approximate difference equation for (2). Let (m) Uh be an M-component
vector which satisfies the following approximate difference problem:
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Ah(m)Uk,i — bk- („_!)[/l\i ■ („_!)[/v\Vi ' jfcfi' • (m)Uk,i = 0 t = 1 , • • " , N ^

= <pj ; j = N + 1, M;

here k, I, and p take on distinct integer values between one and three. We set aUkii = 0
for all k and i.

We first observe that (m)Uk_{ > 0 for all i, m, and k and that the Laplacian matrix
corresponding to (8), denoted by (m)Lk , has all elements of its inverse non-positive.

Let tmiWk - (m)Uk — („-dUh . Then (m)Wk = 0 on dQh and satisfies the equation
A W _ h Tjnl.1) rjn(p) T Tn(k) —1 -ttt
■&H (m) VV Ic Ok i („_ 1)1/, (m_i )Uk k

  Li TT r Tjn(l) Tjn(p) / jjn(k)-1 jjn(k)-l\
— Vk\ (m-1) ^A:L(m-2) U I (to-2) U p \(m-1) U k (m-2) U k J

+ Tjn(fc) 1 r Tjn(l) / rrn(p) Tjn(p)
(m-l)Vk [{m-2) ^ I \(.m-l)Vp (m-2) V p

+ <.-i,C^("((.-i,E^(,) - = 0. (9)
Since iUk > aUk = 0, we conclude that, for all k, im)Wk has sign opposite to <„_i,Wk.

Let (m)W'k = (m+DUk — Uk . Then (.m)W't satisfies the equation

(m)wk - bk (m_1)c/?(i) (m>wi

= 6»{„-x)^[(»-«^?(,) + e>u
. r TJnW( TTn(v) — TV{v)\ T Tjn(p)/ rrnCi) _ 77B<!>M1I — f>

L(to—2) U I \ (m) Up (m—2)Up J I (to—I) U p \ (to—1) U I (m—2)^l )\\) "

Reasoning as in §3 shows that {(2m) Uk} is a non-decreasing sequence and {(2m+1)Uk] is a
non-increasing sequence. Let us denote their respective limit, in m, by n and v. The
identity of ju and v now follows by the same arguments as in §3.

We have therefore exhibited a difference method for (2) that converges uniformly
to the solution of the system of differential equations. It should be pointed out that this
method does allow for an excellent error estimate in the solution of the system of approxi-
mate difference equations.
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