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A FREE BOUNDARY PROBLEM FOR THE HEAT EQUATION WITH
HEAT INPUT AT A MELTING INTERFACE*

BY

B. SHERMAN
Rocketdyne, A Division of North American Aviation, Inc.

1. Statement of Problem. We consider a slab of heat conducting material initially
occupying 0 < x < a; the slab is insulated at x = 0 and there is heat input Q(t) per
unit area per unit time at the opposite face. If melted material is formed we assume it is
removed immediately; the heat input is always at the melting interface. This problem
has been considered by Landau [1], Boley [2; 3; 4] and Citron [5]. The problem is for-
mulated as follows: we wish to find the equation x = s(t) of the melting interface and
the temperature u{x, t) in the slab when these quantities are subject to

kuxx = u, , u(x, 0) = f(x), uz(0, t) = 0, ^

w(s(0, 0 = 0, —pls'it) + kux(s(t), t) = Q(t), s(0) = a,

where f(x) is the initial temperature distribution (we assume f(x) < 0, f(a) = 0), k is
the thermal conductivity, k the thermal diffusivity, p the density, I the latent heat of
fusion, u the temperature, and the melting temperature has been taken to be 0.

The formulation (1) is not completely precise for the following reason: if the heat
flux Q(t) is insufficient to maintain melting for some positive time interval then we must
drop the condition u(s(t), t) = 0 for that time and deal with the conventional problem
in which one face is insulated and the other face is fixed and has a prescribed heat flux.
We note that there are two possibilities.

(a) The slab melts without pause, i.e., s'(t) < 0 with s'(f) = 0 at isolated times
t; it may or may not melt completely in a finite time.

(b) There are intermittent periods of non-melting; in this case, as remarked above,
we must drop the condition u(s(t), t) = 0 during the non-melting periods. Complete
melting may or may not occur in a finite time.

The strongest theorem we could state would specify which type of situation exists;
given Q{t) and /(<), i.e. (a) or (b), and would assert the existence and uniqueness of a
solution. No theorem of this kind seems to have been proved for (1) although a unique-
ness theorem has been given by Boley [4, p. 5]. Existence theorems for various kinds
of free boundary problems for the heat equation have been proved by Evans [6], Miranker
[7], Kyner [8; 9], Friedman [10; 11], Trench [12], Douglas and Gallie [13], and others.
In the problem treated by these authors the melted part remains intact and the heat
is applied at the fixed end of the melted material. This leads to a simpler boundary
condition at the melting face.

In this paper we use a modification of Miranker's method to prove an existence and
uniqueness theorem for (1) which may be stated as follows.
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Theorem. Suppose fix) exists and is continuous in some interval o < x < a. Let
f(x) be continuous and bounded in 0 < x < a and let Q(t) >0 be continuous for t > 0.
Then if

pls'(0) = kuMO), 0) - Q(0) = kf'(a) - Q(0) < 0 (2)
there exists T, u(x, t), and s(t) satisfying (1) for 0 < x < s(t), 0 < t < T, such that
s'(<) is continuous and negative; the solution is unique.

We note that this is a local theorem, asserting that if melting has begun then it will
continue for some time thereafter. Before proceeding to the proof of the theorem we
observe that complete melting in a finite time t occurs if and only if

[' Q(r) dr = pla-- f f(x) dx. (3)
J o K J 0

Eq. (3) follows directly from (1); a derivation can be found in the book of Boley and
Weiner [2, p. 192],

2. Proof of theorem. The method used by Miranker is based on a method devised
by Kolodner [14] for a class of free boundary problems for the heat equation. Kolodner
derived a number of non-linear integral equations ([14], p. 13, Eqs. (5.1), (5.2), (5.3))
■each of which is satisfied by the unknown boundary.1 Miranker applied one of these
integral equations to his problem and proved the existence of a solution by applying
the principle of contracting mappings, i.e., a contracting mapping of a complete metric
space into itself has a unique fixed point.

For the purpose of proving the existence of a solution of (1) the method of Kolodner
does not work, since his equations (5.1) and (5.3) of [14] turn out to be integral equations
of the first kind and therefore unsuitable for a fixed-point argument, while his Eq.
(5.2) is applicable only if s'(t) > 0. But in (1) we clearly have s'(t) < 0. We may, however,
proceed by taking, as a starting point, the discussion of Goursat [15, p. 316].

In order to simplify the notation suppose units have been chosen so that <c = 1
and write a = pi and /3 = k. We represent u(x, t) as follows:

„,r f\ _ r p(t) r ((x - .s(t))2\ ax + swy
n{x' } ~ Jo 2[»r(t - r)]1/2 /\ 4(1 - r) J + 4(t - r) dr

, r m r ((x - £)2\ . Kx + a2Ydi, (4)

where <p(z) = e~z and n(t) is a continuous function to be determined. The function
u{x, t) is an even solution of the heat equation such that u(x, 0+) = j(x) for 0 < x < a;
since it is even, uJO, t) = 0. From (4) we get

«■<*' 9 - -[ 4 W-\)T* ) + (x +

We now let x approach s(t) from the left. Then ([15], p. 308)

dr

df.

'The geometry in Kolodner's paper is such that, to be consistent with his notation, we would have
to take the insulated face at x — a and apply the heat at the opposite face.
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I+1 m -1 m [wo -
dr+«o+

d(. <5>

Eq. (5) is one equation for the two unknowns s(t) and n(t). Another equation is obtained
by letting x —* s(t) in (4). Then

n (' m(t) [ (m - s{r)f\ /(s(<) + s(r))2\
° - Jo 2Mt - r)]"2 A 4(t - r) J + A 4(t - r)~) dr

, r /© r , /(«(o + £)aV
+12(ir<)i/2 « y +

This integral equation of the first kind may be converted into an equation of the second
kind ([15], p. 340):

T'/2 M I f' dK^' T) ( ) I
"FM(<) + i0 ^r~,x{T)dT

d [' 1 r r m J f(sM - ?)2\ , f(a(v) + n)2\\ 7tl, fn
~ ~dt I (t - v)l/2 Lie (^)I/5 )+ v\~~Tv // dv> (6>

where

K(. S [' 1 f f(s(v) - s(r))2\ ((s(v) + s(r))2\1 ,
K(t• T) - JT 2[*(V - r)(t - W 4(?7 - r) ) + ^ 4(77 - r) J J ^ (?)

Eqs. (5) and (6) constitute two equations for the two unknowns n(t) and s(t); we will
show that these two equations, together with the initial condition s(0) = a, have over
some interval 0 < t < T, continuous solutions n(t) and s(t) such that s'(f) exists and
is continuous.

The derivatives which appear in Eq. (6) may be evaluated; the details are carried out
in the Appendix. Eq. (6) may then be written

m(0- I' /.' ̂  f. *• (8>
where

Hv, t) = (s(v) ~ S(r)f\ , l(s(V) + s(r))2V
4(77 — t) / n 4(77 — r) /

(9>

If we assume that (5) and (8) have solutions such that n(t) and s'(t) are continuous in
0 < t < T then we may let t —> 0 in these equations and obtain the limits

m(0) = /'(a), ? *'(0) + ~ Q(0) = /'(a). (10)
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The details of these calculations are carried out in the Appendix. We write (5) and (8)
in the form

* s'(o + i q(o - mo = mt), m, Kt) = cm M(o). m)
We define now the Banach space of vectors (-s(£), m(0)> where /*(f) and s(0 are continuous
functions on 0 < t < T, T to be determined, and such that s'(t) exists and is continuous;
the norm for the Banach space is taken to be

II(«|M)|| = |s(0)| + | Ml + ||m||, (12)
where

INI = max |s'(0|, ||m|| = max |m(0I-
0<t < T 0 <,t<T

We select two positive constants f j and f2 , with < — s'(0), and define a closed
subset S of the Banach space by prescribing that (s, n) t S is and only if

(a) s(0) = a,

(b) m = f'(a), ? 8'(0) + ± Q(0) = f'(a), (13)

(c) |s'(0 - s'(0)| < ti , ImV) - f'(o) | < .
It will be convenient to write A = ^ + s'(0), B = — + s'(0). Thus we may write
the first inequality of (13c) as

B < s'(0 < A < 0. (14)

We may now state the existence and uniqueness theorem: consider the mapping

I S*'(0 + J 0(0 - §M*(0 = F(«(0, m(0), s*(0) = a, m*(0 = G(s(0, m(0). (15)

Then T may be chosen so that (15) is a contracting mapping of S into itself, i.e.,

||(s* sf , M*)|| ^ C(T> fi > £2) ||(s2 Si , n2 Mi)||;

where 0 < c{T, , f2) < 1. Thus we may conclude that the mapping (15) has a fixed
point, i.e., that (11) has a unique solution.

The theorem stated above is a local existence theorem. In order to state a theorem
valid for all t > 0 which would perhaps exclude the case of intermittent melting it
would probably be sufficient to take Q(t) in excess of a positive constant and |/'(0I
less than a positive constant. Complete melting would then occur in a finite time. These
conditions are, of course, unduly stringent.

Appendix

In the Appendix we evaluate first the derivatives that appear in (6). In the second
section we prove that the mapping (15) is a mapping of the Banach space of vectors
(s(0, m(0) into itself, i.e., that s*'(t) and m*(0 are also continuous. In the third section
we prove that the set S, defined by (13), is mapped into itself. Finally, in the fourth
section it is shown that the mapping of S into itself is contracting.
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1. Evaluation of the derivatives in (6). We show first that

d f' 9^ An - f' 9'^ .7,1 Hfrtdt Jo (t - vy/2 d7] -Jo a - vy2 dv> (16)

where g(r\) is given by (9). If s'(ij) exists and is continuous then g'(ri) exists and is con-
tinuous for 77 > 0; it may be obtained by differentiating under the integral in (9):

9 {ri) = 1 riw™ A~^ J+ v\ 4v J.
! m

4 {irri>y/2
_«i) - ey((s(,,)4- 9') + «,) + ejw* sty d(. (17)

It can be proved easily that ^(0+) = 0 and yl/2g'(y) —> j'(a)/2ir1/2 as 17 —> 0. To prove
(16)

/o I (r -(t)1/5 dT = /„ I (r ^ ^

= £ 2g'm - r,)1'2 dv = Jg' {t f_(^)1/2 d„. (18)

The last step follows by partial integration. On differentiating both sides of (18) we
get (16).

We show next that
a [' >P(v, r) , [' ^,(17, t) /77 - tV/2 . .
3* Jr Ku - r)(« - r,)]"2 i-rli-J *»' (19)

where \f/ is given by (9). From (14) a + Bt < s(<) < a + At; suppose T is chosen so
that a + BT > 0. Thus s(t) > a + BT > 0. The function t) is continuous in t >
ij > r > 0, with t) = (4tt)-1/2 and the derivative if/„ given by

(s(ij) — s(t))s'(v) , (sp?) — s(t)f
2(77 — t) 4(77 — r)2 J

1
27T1/2

ipv(ri, r) is again continuous for t > rj > r > 0; it can be proved easily that in this region
there is a constant K such that |^„(»7, t)\ < K for any choice of s(t) in the class described
by (13).

The proof of (19) proceeds as follows:

r r (i^sY2 dv dy = f f dy dv
JT Jr 7 — r Vy — ??/ J, J, T - !• \r - V

= 2Hv, r) tan-1 (^—j) dr, = 7T1/2 + I [(„ r,)]1'2 drt' (21)

The last step follows by partial integration. On differentiating (21) with respect to t
we get (19).

2. Continuity of F(s(t), n(t)) and G(s(t), n(t)). The first term of F, the integral

<£,(>?, t) = 2^172
(s(y) - s(t))2\

4(77 — t) )

+
Mr,) + s(r))s'(y) (S(y) + S(r))2

2(77 — t) 4(17 — r)2 . (20)
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with respect to r, behaves essentially as f„ (t — t)~1/2cIt = 2<1/2 and is therefore con-
tinuous. The continuity of the second term, the integral with respect to £, follows from
standard theorems. The continuity of the first term of G, the double integral, may be
ascertained by introducing the variables r = tl-, r, = while the second term of G,
the single integral, behaves as the first term of F.

3. Preservation of properties (13b, c) under the mapping (15). The preservation
of properties (13b, c) follows from the fact, proved below, that F(s(t), n(t)) and G(s(t),
H(t)) converge uniformly to /'(a)/2 and j'{a) as t —> 0. By uniform convergence we mean
uniform with respect to the class of functions described by (13b, c). More exactly we
may make the differences \F(s(t), n(t)) — f(a)/2\ and \G(s(t), — /'(o)| arbitrarily
small by choosing t sufficiently small, and this choice of t is independent of n(t) and s(t)
in the class of functions described by properties (13b, c). It follows then, from (15),
that m*(0) = f(a) and as*'(0)//3 + Q(0)//3 = f(a) so that (13b) is preserved under
the mapping (15). It also follows that T may be selected independently of n(t) and s(t)
so that \s*'(t) — s'(0)| < and \n*(t) — /'(a)| < f2 for 0 < t < T\ thus property (13c)
is preserved under the mapping (15).

We proceed now with the proof of the uniform convergence of F and G to /'(a)/2
and /'(ct). The absolute value of the first term of G does not exceed

, /; /; rh it—)'" «*<■> /: /: i o-W-nr -
where y = 2ir~1/2K(j'(a) + )• Thus the first term of G tends to 0 uniformly as t —> 0.
Next, consider the second term of G; referring to (17) this second term is the sum of
six terms of which the first is

)«}*•
The expression within the braces does not exceed

fa+Bv -M J(« + By - ,, , f HS)
Jo 2t] \ 4?7 / Ja + Br, 2t) S"

Let e = —B(ij + rj1/4), where r, is small enough that e < 5. Let Mj(ij) and M2(r,) be,
respectively, the supremum in 0 < £ < a and the maximum in a Br, < £ < a of
-/(£)• Then (23) does not exceed

r- Mt ((a + Br, - £)2\
J. 2^n 4, r£

r+B' _/(a + Br,) + ffe)(a + Br, - f) /(a + Br, - ?)2\ MMi-B)
+ L 2r, n + 2 ~~ *

where £ < !j, < a + Br,. Let M3(rf) be the maximum of /'(£) in a — e < £ < a; then
M3(r,) —* /'(a) as r, —> 0 and

Ja+B" -/(« + By) + f (£,)(q + Br,-Q + By - ^ ^

< =*&* /: *(^4^)«+- ^)j
— ~f( n

M'2 + M3(v)2r,
1
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Since, as 17 —» 0,

-Ka + Brj) Bj'(a)
2 r, 2 ' "Ujj1

the expression within the braces of (22) does not exceed univ) + /'(«)> where co^tj)
can be made arbitrarily small by choosing n sufficiently small; the function cox(77) does
not depend on s(rj). A similar argument holds in the other direction. Thus

«.0?) + /'(a) < f° ^ £)>) dH < CO! (77) + /'(a), (24)

where w2(»?) does not depend on s(rj) and can be made arbitrarily small by choosing ij
sufficiently small. From (24) it follows that (23) lies between the two functions of t

 , d, - fla), It - 1,2. (25)-1/'7T J 0 [v(t — v)]
It follows from (25) that (22) converges uniformly to — /'(a). A similar discussion shows
that the second term (of the six making up the second term of (?) converges to 2f'(a)
uniformly; and finally the remaining four terms can be shown to go to 0 uniformly.
Thus we may conclude that G(s(t), n(t)) tends to /'(a) uniformly as t —* 0.

Considering now F, it is easily proved that the first integral of F tends uniformly
to 0 as t —> 0. The second integral has two terms; the term involving s(t) + £ is also
easily proved to go to 0 uniformly as t —> 0. There remains the term

/.'iRJk (26)
If we decompose the interval as in (23), then it can be seen that (26) does not exceed
a sum of terms which go to 0 uniformly with t plus the term

< M.(«)[(A - *)(£)'" - M Bl'" *(jy

(27)

The integral on the right of (27) is equal to
-B/ 2<>/«

(2tt)_1/V(|2/2) dk,/;

and thus goes to | as t —> 0. Since Ms(t) —* f'(a) the expression (26) does not exceed
a quantity which goes to /'(o)/2 uniformly as t —> 0. A similar argument can be given
for the other direction; thus (26), and therefore also F, goes to f(a)/2 uniformly as t 0.

4. Contraction property of the mapping (15). We consider first G, and consider
the first term of the six which make up the second integral of G, i.e., the integral involving
g'(ri). It must be shown that the absolute value of
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r r -m ryfew - a2\ (mv) - p:
Jo Jo 4[7n}3(t — 77)]1/2 _ \ 4i? / 4rj dlj dr; (28)

does not exceed Ci(T")||s2 — s,||, where T may be chosen so that cx{T) is arbitrarily small.
By the mean value theorem, (28) be written as

where s(ij) lies between and s2(ij). Let I(£, rj) be the integrand in (29). From

s2(0 - Si(<) = [ (s2(??) - sK^)) d-n
Jo

it follows that |s2(f) — Si(i)| < T||s2 — Si|| for 0 < t < T, and, using the notation of
the preceding section,

|/; /;■' 7®,,)«i,| < r ii& - ,.i 1 ([16r^;°!",)r Jg >,
(30)

The function x 2<p(B2x 1/4/4) reaches its maximum at x — (32/J32)4; it is increasing
in 0 < x < (32/B2)\ Thus if 0 < t < T < (32/B2) and 0 < f < 1,

(<f)"1/4) < T'2V(~ r-1/4),

so that the right side of (30) does not exceed T'1<p(B2T~1/i/4:)(MlaTrl/2/4:)\\s2 — s,||;
the coefficient of ||s2 — s„|| in this expression may be made arbitrarily small by taking
T sufficiently small. We have also

I [' r m w, , If -f(a - e)(s2(v) - SlM) ((s(v) - a + e)2\IX L/(s'dt d" \h wo - ,)]"■— n—t, )d' <3i)
r r «£)<«,w - «,(>;)) /(«m - o'\,-1 L 4[„'« -n 4, J* <*' •

By the mean value theorem (s2(y) — Si(y))/>7 = s2(r}*) — s[ (??*), where y* lies between
0 and t), so that |(s2(77) — Si(i7))/?j| < ||s2 — sx|| for 0 < rj < t < T. If Mx(t) and M2(t)
are the maxima of |/(£)| and |/'(£)| in a + Bt + BtUi < £ < a then the right side of
(31) does not exceed

[Msy'V^ + M2{t) \b\ (t + tUiy/2/4] ||S2 - Sl||

< (X 1/2/4)[M1(D + M2(T) |B| (T + T1/4)] ||s2 — sx||. (32)

The coefficient of ||s2 — sx| | on the right of (32) may be made arbitrarily small
by taking T sufficiently small. Thus the absolute value of (28) may be made less than
cx(T1)11— Si||, where cx{T) may be made arbitrarily small by appropriate choice of T.
By similar arguments we can come to the same conclusion about the remaining five
terms of the second integral of G.

Considering now the first integral of G we want to show that the absolute value of
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fo JT t 1 T ('j _ ~) T)ft(r) — iCOj, t)pi(t)) c?t (33)

does not exceed c2(77)||s2 — Si|| + c3(T)\\n2 — ah|I, where c2(T) and c3(T) are positive
and may be chosen arbitrarily small by taking T sufficiently small. Here \^2> and
are obtained from (20) by replacing s(ij) and s(t) by s2(i?) and s2(r) and by s1(ij) and
Si(t). We may write (33) as

1/2
C2)/

/„ I r^-T ,a'2,(M2 ~Mi) dT

+ /o I t=t~t {r=i) ^ ~ ^1)} rfT- (34)
The absolute value of the first term of (34) does not exceed

K l,M2 ~ Ml11 fo I' & - r.[){t- r,)]l/2 = 2tK l|M2 ~ Ml11 - 2TK l,M2 ~~ Ml11' (35)

The coefficient of ||#i2 — | on the right side of (35) can be made arbitrarily small by
taking T sufficiently small. Introducing

±( \ (My) =t s*M)2\ 1 (v — t\1/2 , . , 0

and referring to (20), the second term of (34) is the sum of four terms of which the
first is (we omit the factor —1/2t1/2)

( f, [fe(,,)2~ xJ(,, r) - ('-(")2(- 'MWxfa, T)] d, dr. (36)

The expression (36) is the sum of the following three terms

(a) — S^ (S2'^) ~ s^v))x~i(.V, r) dy dr,

(c) Sl^ si(.v)(x1(v, t) — x~i(v, r)) dt] dr.

By the mean value theorem,

Sk(v) ~ Sk(r) _ „ . S2(>?) — S2(t) _ Sjjri) — S^t) _ g,^. _

T] — T 7] — T 1] — T

for some f (not the same in each equation) between 17 and r. We use also the fact that
\<p(zi) — <p{z2)\ < \zi — z2\ for Zi and z2 non-negative. Then the absolute value of (37a)
and (37b) each does not exceed

t Is 1 h* - «u /; /; [(, _ %?- ,>r ■ (38>
where 7 = (/'(a) + f2)/2. The integral in (38) is 21 < 2T. The absolute value of (37c)
does not exceed



346 B. SHERMAN [Vol. XXIII, No. 4

J' kO?) ~ S2(t) _ Si(7?) — S^r)
rj — t 7] — r

• Hn) ~ «,(r) + Sl(v) - Sl(r)| [(< _ 3ji75 < ^TyaB2 ||s2 - 8l||. (39)

The coefficients of ||s2 — Si|| in (38) and the right side of (39) can be made arbitrarily-
small by taking T sufficiently small. Thus (36) can be made less than [|s2 — Si|| multiplied
by a function of T which can be made arbitrarily small by making T sufficiently small.
The second of four terms which make up the second term of (34) can be treated in the
same manner. The third term is

[' f' |"(8!W+82(rMl)) +/ \ (SiO?) + S!(t)K(i?) +/ si , ,
io Jr L W=^r) X2("' T)  Xl("' r)J dl] dT• (40)

In a manner analogous to (37a, b, c) the expression (40) is the sum of three terms,
each of which is obtained from the corresponding term of (37) by replacing xl by xt
and sk(ri) — sJt) by sk(t]) + st(r). Let (37 a+, b+, c+) be these three terms. Then
the absolute value of (37a+) does not exceed a/(f)|[s2 — Si||, where

m
and, since \s2(t) — sx(i)( < T||s2 — sx||, the absolute value of (37b+) does not exceed
2 |B| Tf(t) ||s2 — s^l. Introducing the variables r = <£, 17 = if we see that /(£) is con-
tinuous, increasing, and /(0) = 0. Thus the absolute values of (37a+) and (37b+)
do not exceed af(T) ||s3 — Si|| and 2 |JS| Tf(T) ||s2 — Sj|| and both coefficients of ||s2 — Si||
go to 0 with T. We may write (37c+), using the mean value theorem and <p'(£) =

[' [' -// \ Sl(v) + ®l(r) , ,J"(s2(7?) + S2(r))2
I J, 2(, - ,) 4(, -r)

_ (Si(v) + St(r))2
4(17 — r)

where £ lies between (s2( 17) + s2(r))2/4(57 — t) and (sx(77) + s1(t))2/4(h) — r). Since
either of these is greater than or equal to (a + BT)2/(17 — r) we have

¥>(5) < v«a + BTf/ir, - r)).
Thus the absolute value of (37c+) does not exceed

|B| T Ik - „|| /; /; ^ 7^7 (f^F ^ dr. (41)
Introducing the variables £, f into the integral in (41) we see that, as a function of t,
the integral is continuous and increasing in the vicinity of t = 0 and equal to 0 for
t = 0. Thus we may make the coefficient of ||s2 — s,|| in (41) as small as we wish by
taking T sufficiently small. Thus it follows that (40) can be made less than ||s2 — s^l
multiplied by a function of T which can be made arbitrarily small by making T sufficiently
small. The fourth term of the four which made up the second term of (34) can be treated
similarly. Thus our assertion about (33) is proved; it follows therefore that

Ik* - rt\\ < c(T)(I|s2 - 8x11 + I|M2 — Mill), (42)
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where T may be chosen so that c(T) is arbitrarily small. By similar arguments on F
we may establish that

||s? - s1|| < d{T)(\\s2 - Sl|| + II* - Mill). (43)
By adding (42) and (43) and by choosing T so that c(T) + d(T) is positive and less
than 1 we establish the contracting property of the mapping (15) in the interval 0 <
t < T.
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