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AN ANALOGUE OF THE KOLOSOFF-MUSKHELISHVILI FORMULAE
IN THREE DIMENSIONS*

BY

DARRELL D. PENROD
University of Notre Dame, Notre Dame, Indiana

1. Introduction. The application of analytic function theory to two dimensional
elasticity has contributed greatly to the development of that area. While there is no
complete generalization of this technique for three dimensions, there is, in fact, a theory
of functions of a hypervariable which can be utilized. The hypervariable is that of
Ketchum [1], and monogenic functions of this hypervariable generate harmonic functions
in three dimensions. Since the displacement vector of a linear isotropic elastic solid can
be represented in terms of harmonic functions, it can also be represented in terms of
functions of the hypervariable. This representation is accomplished herein and used to
generate several singular solutions for the infinite and semi-infinite elastic space.

2. Hypernumbers and functions of the hypervariables. A hypernumber B has
the following form:

B = Z bkEkJk
k = — oo

where each bk is a complex number and Ek is a basis element for the algebra. The ordinary
algebraic operations for hypernumbers are defined below. If B = 2*—» bkEk and
C = ckEk then

CO CO

B ± C = ^2 (bk ± ck)Ek , XB = ^2 (hb*)Ek
lc=i —oo k — — oo

oo oo

BC = X) dkEk where dk = ^ &*-A
£ = — 00 J - — CO

provided dk converges for each k. If one or more dk is infinite, then the product is not
defined.

We shall be concerned with functions of the hypervariable

where

A hyperfunction

w = —vE-1 + xE o + uEi

u = i(z + iy) and v = §(z — iy).

CO

F(x,u,v) = X fk(x,u,v)Ek

*Received January 18, 1965; Revised manuscript received April 16, 1965. Portions of this paper
are based on the author's doctoral dissertation completed at the University of Illinois, 1964.
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is said to have a derivative with respect to w if its component functions /* satisfy the
following equations

~ (Jfc = 0, ±1, ±2 ■ ■ •) (2.1)dvdxdu

When the derivative exists, it can be shown (Ketchum [1]) that

iK _ V1 d/t jjj
dw dx k

Furthermore, when dF/dw exists, and when the second partial derivatives of each /*
exist and are continuous, we can differentiate (2.1) with respect to x obtaining

d% d2/*+i
dx2 dx du

Under the above assumptions

d2U+1 62f,Jfe+1

dx du du dx
= d fdjk+1\

du\ dx )'

But according to (2.1)

and so

dfk+i _  dfk
dx dv

d2u d2jk+1 d2n
dx2 dx du du dx

= A (_&*)
du \ dv)'

Recalling that u = §(z + iy) and v = §(z — iy) we have

dx dy dz

A function which has a derivative for all values of w in a region D, and whose com-
ponent functions are analytic in D is said to be monogenic in D.

The preceding discussion shows that the component functions of a monogenic func-
tion of w are themselves harmonic. A partial converse to this result was given by Ketchum
[1].

Theorem 1 (Completeness Theorem). If g(x, y, z) is harmonic in a region D, then
there exists a function F(w) = fkEt , monogenic in a subregion of D, with the
property that g(x, y, z) = f0(x, u, v).

3. Displacements and stresses in terms of functions of the hypervariable. The
desired hyperfunction representation is based upon a harmonic representation deduced
from a result due to DufEn [2].

Lemma 1. If g (x, y, z) is a harmonic function in the cylindrical region C defined by
y2 + z < a2 and 0 < x < b, then in a cylinder C C there exists a harmonic function
h(x, y, z) such that

dh
dx ~ g'
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Theorem 2. If u is a vector valued function of class C3 in a cylinder C, and if u is a
solution of the homogeneous Cauchy-Navier equation in C, then there exist functions
f, g, and h, harmonic in Ci C C such that

u = - V X gi + fi - xVf - Vh (2.2)

in Ci.
Proof: The Cauchy-Navier equation is

X + V(V-u) - VXVXu = 0 (2.3)

where X and p are constants (nonzero). Since the components of u are of class C3, the
divergence of the above equation exists and is

V2( V -u) = 0.

Hence we put V-u = df/dx where / is harmonic, (lemma 1). We also notice that since
/ is harmonic,

V(V-u) = V^=VXVX/i,

and (2.3) becomes

It follows that

and

V X V X [X * 2m fi - u] = 0.

V X [X ^ /i - u] = W, (2.4)

VV = 0.
Let <p = dg/dx where g is harmonic (lemma 1), and again Vdg/dx = V X V X gi.
Then equation (2.4) is

V X [X +„ ̂  A-»-VXji] = 0

which implies that

X fi - u - V X gi = V* (2.5)

Taking the divergence of equation (2.5) and recalling that V - u = df/dx, we have

= vv.
fl OX

However, / is harmonic so that
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hence

* = hirxf + h
where h is harmonic. Substitution into equation (2.5) yields the desired result.

The scalar form of (2.2) is

_ X + 3 /i , X -f- n df dh
Ul 2 fx 2/i dx dx

u = _ X + M d[ _ dh
2 dz 2/t dy dy

_ dg X ~t~ jn df_ dh
Ua ~ dy ~ 2/1 x dz~ dz

Let P(w) = XX-® PkEk be a monogenic function of w, then P' will denote the j-th
component function of P(w), that is,

P' = Pi
Theorem 3. If u is a solution of the homogeneous Cauchy-Navier equation and

of class C3 in a region D, then, in some subregion of D, there exist monogenic functions
F{w), G(w) and H(w) such that

  X ~f- 3/i „o X -f~ /i dF° dH°
Ul 2/i 2/i X dw dw

dG1 . X + /i dF1 . dH1 /0u2 — ius = -3 t —— x 3 i -i— (2.7)dw 2/i dw dw

, . dG'1 . X + /i dF'1 . dH_1"' + •»*- —S"-'"2
Proof: It has already been shown that

_ X + 3/i , X -f- /i df dh
Ul ~ 2/i ' 2/i * dz ~ dx

_ 5(7 X M d/ 3A
33 2/i 35 3z/ 3?/

3g X + /i 3/ 3/i
m3 = a o— a:   —dy 2/i 32 32

where /, <?, and h are harmonic. Let three monogenic functions F, G, H be chosen (theorem
1) such that

F° = /, G° = p. H° = A.
Then

dF^ = d[ dF1 _ df _ .df df
dw dx ' dw dv dy dz

dF'1 _ df _ df df
dw du dy dz '

and similarly for G and II.
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Finally, we have

X -f- 3/x po X —f— /x dF° dH° X -f- Six , X -f- ix df dh
2n 2n X dw dw 2/i 2/n x dx dx Ul '

dG1 _ .X + v. dF1 _ .dH1
dw 1 2 ix X dw 1 dw

( dq X + fx df dh\ .(dq X + fx df dh\
= l-S --^rXYy- Ty) ~ \Ty %TXJz~ Jz) = U> ~ **■ '

and

dG-1 . X + tx dF'1 . dH'1
dw 1 2fx X dw 1 dw

( da X + fx df dh\ . .(dq X + fx df dh\ , .

as required.
The corresponding equations for the stresses are derived from the following relations:

dut . . d(u2 — iu?) I dux , . dUi , . du2 , dll3 I .
Tv + l—to J = "L"to +1~^ +' to + to J = T" + ZT- •

d(w2 — iu3) f du2 , . du2 . du3 , du3
M dT~ = ^ + l^-l^ + ~Yy.

„ dF°
V'U = ^'

X V -U + 2M = <rx .dx

Utilizing equations (2.1) and (2.7) yields the stress hyperfunction relations

_ i(av — az)
tv. -r 2

dF0 „ . \ d2F° n d2II°a, = (X + 2/x) — - (X + fix -t-2 - 2mdw dw dw

dFx , /x , . d2i?" , „ d2#1 , .(ft?1
T" + iT" = + (X + + 2" W + ^ dw2

t(<r, - <r2) d2G2 , t(X + m) , . d2H2
2 = + ~2~ X^? + ,lldwr

(2.8)

dF"
<rx + <rv + <r. = (3X + 2^)

4. Applications. Many of the important solutions in three dimensional elasticity
involve displacements of order (l/p)(p2 = x2 + y2 + z), and it is quite natural to seek
monogenic functions of the same order. Knerr [3] has given a function S(w) of the desired
type. Let

S(w) = f]snEn
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where

1
Sq —

P

= (n = 0, 1, 2, ■ • ■)

(z - iy)n
* p(p + *)"

where
p2 = x2 + y2 + z2.

It is easily verified that this function is monogenic except along the negative x axis and
at the origin where it ceases to exist.

A number of solutions are generated by direct substitution into the displacement-
hyperfunction relations. These solutions have either point or line singularities and are
called nuclei of strain by Love [4]. The use of the function S(w) in the displacement-
hyperfunction relations (2.7) is illustrated below, and the various nuclei of strain are
identified.

1. Let F(w) = S(w), G(w) = II (w) = 0. Then

X -f- 3fi 1 . X -f- n x2Ui = " ~ H 7, 3
Z/i p Zfi p

_ X + m xy
U2 ~ o 32m P

X + n xz
U3 — Q 3"

2/j. p
(Point load in the x direction at the origin)

2. F(w) = G(w) = 0, II(w) = S(w);

u! = x/p , u2 - y/p3, u3 = z/p3

(center of dilatation at the origin)

3. F(vJ) = H(w) = 0, G(w) = S(w);

w, = 0, u2 = z/p3, u3 = -y/p3

(Center of rotation about the x axis at the origin)

4. F(w) = G(w) =0, g = -S(w);

i  y
Ul p ' U2 p(p + X) ' Us p(p + x)

(Line of centers of dilatation along the axis from x = 0 to x = - co)

5. F(w) = H(w) = 0, g = S(w);
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Ul = °' U2 = p(p + x) ' Us = p(p + x)

(Line of centers of rotation about the x axis from x — 0 to x = - co)

m
dw6. F{w) = S(w), G(w) = 0, § = hS(w);

_ X -f- ju ̂  . X -f- (i
Ul 2/x p 2 up3'

\ + fixy y
2n p3 p(p + x)

\ u. XZ Z
W3 — n 32/1 p p(p + z)

(Point load at the origin normal to the half space x > 0 with no other surface tractions
on a; = 0; Boussinesq [5])

7- F ' 2<xT7o « - £-)sw' S " f « + *->«»>•

1 2 1 XZ
Ml 2(X + n) p(p + x) 2/i p3 '

1 1/2 1 2/zr
*)2 '

1
2 2/x p3 2(X + m) p(p + z)2 '

_ J_ (i . .  L_
"3 2/i Vp + p7 + 2(X + yu) .P + x p(p + a:)

(Point load at the origin in the 2 direction on the half space x > 0 with no other surface
tractions on a; = 0; Cerruti [6])

The generation of solutions with singularities interior to the half space x > 0 neces-
sitates the introduction of two new monogenic functions. Let

S'(w) = £ s'nE,

where

_ (-!)"(* + iyTs" p'(p' + * - Q' •

_ (z - iy)"
o-n — // /

n = 0,1,2, - - -

p (p +«- r •
p'2 = (X - £)2 + y* + 22

and

S"(w) = £
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where
(-i)-(s + iyT
(p" + s 4

(g - iyT
s" p'V + * + r'

" p(p" + « + &"'
p"2 = (x + £)2 + 2/2 + 22.

The following nuclei of strain have been obtained for the half space x > 0.

8. F(w) = S'(w) + S"(w) G(w) = 0,

dH (X + dS' X + 2M , _ (X + 3m)£ dS"
dw 2 n dw X + n \ + n dw

(A concentrated load in the a; direction at (£, 0, 0) with ^ = r„ = r„ = 0 on x = 0;
Mindlin [7]).

9. +

dH = (X + m)£ dS' (X + m)£ dS"
dw 2m dw 2^ dw '

G(w) = 0
(A concentrated load in the x direction at (£, 0, 0) with Ui = u2 = u3 = 0 on x = 0;
Rongved [8]).
10. F(w) = S'(w) - S"(w),

dH _ (X + p)£ d<S' : (X + M)S dS"
dw 2m dw 2m dw '

<7(w) = 0
(A concentrated load in the x direction at (£, 0, 0) with <rx = u2 = w3 = 0 on x = 0)

11. F(v>) = <S'(w) - S"(w)

dH = _(XjfM)|d^ _ (X + m){ d<S"
dw 2 m dw 2m dw

(?(w) = 0

(A concentrated load in the x direction at (£, 0, 0) with Ui = rxy = t„ = 0 on x = 0).

12. F(w) = |[El - + Y+y S"(w) + 2£

^ = §[£, - g-i][x * Sli S' + X't ?\X-l+^ s"dw L 2/z 2fj.(\ + fi)
(X + m)£ dg' (X + 3m)£ d£"

2m dw 2 m dw

s=-(x [£i+
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(A concentrated load in the z direction at (£, 0, 0) with <rx = rxv = txi = 0 on x = 0;
Mindlin [7])

13. F(w) = i[E1 - -E-i]|V(w) - S"(w) - 2(X + ^ —X -f- 3 n dw

_ (X + m)£ _ X + 3m , . _ (X -f- m)£
2M rfw 2m ^ ; 2m rfu) J

= ~t(X ̂  2m) + «-.][«'W ~

(A concentrated load in the z direction at (£, 0, 0) with Ui = u2 = u3 = 0 on x = 0;
Rongved [8])

14. F(w) = If®! - £_,][£' + 5"]
JTJ

IS, " - B->

g = -(x + £_,][£'(«>) + S'(w)}

(A concentrated load in the z direction at (£, 0, 0) with ux = txv = r„ = 0 on x — 0)

15. F{w) = i[^ - ^_,][/S'(w) - 5"(w)]

Hr <s'« - *"<»» - Hr11 (f + Sr).f - «*■ - ̂
S = '(X2^ 2/x) - S"(u>)]

(A concentrated load in the z direction at (£, 0, 0) with ax = u2 = u3 = 0 on x = 0)

All of the preceding nuclei for the concentrated load in the x direction were deter-
mined from the general expression

c\
F(w) = S'(w) + AS"(w) +B^,

dH = ~(X + m)| d§?_ cs„^ + Dd§H
aw 2m dw aw

G(w) = 0,

where A, B,C, D are real numbers adjusted to satisfy the boundary conditions. Similarly,
the nuclei for the concentrated load in the z direction are derived from the expression
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dS'F(w) = J[®i - #-i] S'(w) + AS"(w) + B dw

g/ _ + /*)£ ̂ + C(S//(w,) + £ ^
2/i 2n dw aw

-1
0 J*

jg --2* [* + *-,]
X + 2f" S'(w) + KS"(w) + L d-

dw

where A, B, C, D, K, L are real numbers.
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