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BOUNDS ON X FOR POSITIVE SOLUTIONS OF
A* + X/(r) {ip + <?(*)} = 0.*

BY

DANIEL D. JOSEPH
University of Minnesota

We shall show that when G(ip) > (?(0) = 1 and \p satisfies typical conditions on the
closed (sufficiently smooth) boundary S of an open n dimensional region V, the values
of X > 0 for which the title equation has positive solutions, are bounded above by the
number

<P
t]0 max 

v>0 <p + G(fP.)

and by the function of \pM = max \p

M + 1).

Thus, positive solutions of the title problem can exist only for values of X > 0 satisfying
the composite inequality (see Fig. 1)

X

Fig. 1. Comparison of Exact Solution for X(^M) with the Bound (1)
for ^ + G(^) = 1 + ^ + S^2, 5 = .195.
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H^m) < UB(4>M) = Vo min max <p/(<p + G(<p))
v>o (1)

Wm/(iPm + 1).

Here r is the n dimensional position vector, 0 ^ /(r) > 0 in "0, and rj0 > 0 and \f/'0 are the
least eigenvalue and positive eigenfunction, respectively, of the homogeneous equation

a*' + vmr = o (2)
corresponding to the title equation and suitably defined boundary conditions.

The one-dimensional version of the equation

M + X/(r)(* + <?(*)) = 0 (3)
arises in applications involving the diffusion of heat generated by positive temperature-
dependent sources. For example, the generation is given by Joule losses in electrically
conducting solids, with X representing the square of the (constant) current and \p + G(ip)
the temperature-dependent resistance [1], or by frictional heating, with X representing
the square of the (constant) shear stress and \f/ + G(y//) the temperature-dependent fluid-
ity [2], The nonlinear equations for some of these simple one-dimensional cases can be
integrated explicitly. Positive solutions exist for all values of 0 < < max \p = \pM < co
but only for a bounded set of X. For these values of X the solutions are double-valued. For
these problems the bounds (1) are quite sharp. We compare the limiting X as given by
direct integration and by (1) in the concluding paragraphs.

We now turn to examine the conditions under which (1) is valid. A prescribed bound-
ary condition of the third kind is considered first. The result here is:

Theorem 1. Let 1) be a bounded and open n dimensional region and S its (sufficiently
smooth) boundary. Assume that \f/eC2(V). Let equation (3), where A is an n dimensional
Laplace operator and 0 < /(r) tC(V), / ^ 0 govern the behavior of \p in V, and

a ~t" P4* ~ 0 on S, (4)

where a, /3, eC°(S) and the differentiation is along the outward normal to S. Further, let
\f/ > 0 and

G(i) > G{0) = 1. (5)
Then, if the homogeneous linear equation

W + vKr)V = 0 (6)
and the boundary condition (4) generate a positive eigen-function t/-„ and a least eigen-
value ijo > 0, positive \p cannot exist when X(^.v/) is greater than the smallest of

Vo^M <p I
+ 1 ' V° ̂  V + (?(*)/'

where 0 < ^ < max \p = \pM ■
Proof of Theorem 1: For any positive solution of (3) and (4) we have

0= f WW - Wo) = (ijo - X) [ fM - x [ f\poG(\f). (7)
J V J V "V

By equations (5) and (6)
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4' + G(j)

_X
Vo

L Hi* * ± m < maxax (-
>0 \(f

/
1 +

\<p + G(<p)J

Jv

[ im + omJv (8>

[ Hot
J v

< 1
1 + 1/*M +M + 1

The case

1^ = 0 on S (9)

occurs frequently in the applications. For this case there exists 770 > 0.
Two extensions of Theorem 1 may be easily obtained:
Theorem 2. Let the self-adjoint operator L (of any order) and boundary conditions

replace A and (4), respectively, in Theorem 1. The modified theorem is valid.
Theorem 3. Let the condition

\p = i/-(S) prescribed on S (10)

replace (4) in Theorem 1. Let Min \p = 0 be a value of ^(S). Let rj0 and \f/'0 be defined by
(2) and (9). The modified theorem is valid.

Proof of Theorem 8. Introduce a harmonic function <p such that

p(S) = *(S) (11)
and

r = t - <P (12)
Of course <p is not negative in V + S and Min <p = Min \p — 0. Moreover, if tp is positive,
it follows from equation (5) that is superharmonic [3] in V; i.e.,

yp > <p in V. (13)

Hence, if > 0 then F > 0. Conversely, a positive T implies a positive \p.
Equations (3) and (12) may be combined to produce

Ar + X(r + F(v, D) = 0, (14)
r(s) = 0, (15)

F(v, r) = v + G(r + v) > G(0) = 1. (16)
This is a variant of the problem treated in Theorem 1.

Inequality (1) is the principal result of this investigation. The simple form of this
inequality is not deceptive. All of the complications introduced by various boundary
conditions, the dimensionality of V and the functional form of /(r) are absorbed in the
determination of the parameter % from the eigenvalue problem associated with the
linear equation (2) and natural boundary conditions. The results of course depend criti-
cally on the existence of a least positive eigenvalue (and positive eigenfunction) for the
linear problem. This does not seriously restrict the scope of the result.

We conclude with an examination of the implications of (1) in some simple cases.
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a. With Gty) = 1

A(iM <
*M+ 1 '

and \(\psi) is monotone with a maximum X = ij0 as \f/M —* <». The first eigenvalue of the
homogeneous linear system is an upper bound on the linear non-homogeneous system.

b. The problem

+ Ae* = 0ax

*(±1) = 0
has a double-valued solution [2] for

A < max = Amax = -893

and no solutions when X is greater than Xmax . The bound (1) gives

Xmax < max UB(\pM) = 7r2/4e = .91.

c. The problem

I|(r#)+XrV = 0r ar \ dr!

W)-f (0)-0
has a double-valued solution [4] when

X < XmaI = 8.0

and no solution when X > Amai. The bound (1) gives

Amax < max UB^m) = (4.81)2/e = 8.5

where (4.81)2 = 170 is determined by the first positive root of J0{t]\/2) = 0.
d. The problem

—jA + A(1 + \f/ + 8\p2) = 0

*(±1) = 0
has a double-valued solution [2] for every non-negative S when

A < Amax (5) max j 2^7 (1 _ K' ^ $)i) }. (17)

where
^ = Wu + *ulh + 4/5 - f 52),

Tan 7 = 3(*„ + |5)/2<r,

K2 = §(1 + sin 7),

and
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X
2.50r

200

- Max UB (»m.8)= f (2/5+1)
^>0

100

0 ' 0.1 1.0 10 100
Fig. 2. Comparison of Exact Limiting X (\(S)) with the Limiting Bound (18).

max

B = 2 Tan-1 [ipM cos-y/cr]*.

The bound (1) gives

Ama* (5) < max UB($M , 5) = J- • (18)
*M>0 4(2 V 5 + 1)

In Fig. 1 we have compared the bound UB(\pM, 8) for 5 = .195 with X as calculated
from the exact solution. In Fig. 2 we have compared the exact limiting values Am„(<5) as
calculated from (17) with the dominating values 7r2/4(2\/5 + !)•

In these simple examples solutions exist for ipM < 00 but for a bounded set of A. A
sufficiently small X is equivalent to a sufficiently small domain with a suitably rescaled
metric. It follows from existence theorems of Courant and Hilbert [5] that solutions to
the title problem for bounded values of ^(1 < \p + (?(f) < ipM + G{\pM)) will exist for
all < oo and condition (10).
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