19661 NOTES 365

TRANSVERSE ELECTRIC AND MAGNETIC EFFECTS*

By MICHAEL M. CARROLL AND RONALD 8. RIVLIN (Brown University)

Abstract. The non-linear electromagnetic constitutive equations, for an isotropic
material possessing a center of symmetry, are used to predict the possibility of certain
new effects.

1. Introduction. In this paper, the non-linear electromagnetic constitutive equa-
tions, for an isotropic material possessing a center of symmetry, previously developed [1]
are used to predict the possibility of certain effects which, as far as we are aware, have
not so far been observed. Thus, if we assume that the electric field is a function of the
electric displacement and magnetic induction vectors, an electric field may result per-
pendicular to the plane of these two vectors. Again, if the magnetic intensity field is a
function of the electric displacement and magnetic induction vectors, a magnetic field
may develop at right angles to these two vectors. In the case when the material is con-
servative, i.e., possesses an electromagnetic energy density function which depends on
the electric displacement and magnetic induction fields only, both of these effects are
zero.

2. The transverse effects. In a previous paper [1], it has been shown that if we
assume that the current density vector J and the magnetic intensity vector H in an
isotropic material possessing a center of symmetry are functions of the electric vector
E and magnetic induction vector B, then**

J = ~E + vE X B + v{(E-B)B

and 2.1
H = 8B + BI{(E-B)E + B{(E-B)E X B,

where the ¥”’s and 8’’s are functions of E-E, B-B, (E-B)®. If we assume that the electric

displacement vector D is a function of E and B, then it follows by reasoning identical
with that leading to the first of equations (2.1) that

D = o/E + oJE X B 4+ o4(E-B)B, (2.2)
where the a'’s are functions of E-E, B-B and (E-B)®.
An alternative form for the equations (2.1) and (2.2) may be obtained by a mathe-
matically analogous argument if we assume that E and H are functions of D and B, thus
E = E(D, B), H = H(D, B). (2.3)
We then find that, for an isotropic material possessing a center of symmetry,
E = ;D 4+ o,D X B + «;(D-B)B,
H = 8,B + 8.(D-B)D + 8,(D-B)D X B, 2.4
J = 7D + 7v.D X B + 7,(D-B)B,

*Received March 16, 1965.

**In the previous paper it was actually shown that if J and H are polynomial functions of E and B,
then the expressions (2.1), with the 4"’s and 8”’s polynomial functions of E-E, B-B, (E-B)3, are valid.
The generalization stated here follows immediately by using a theorem due to Wineman and Pipkin2.
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where the o’s, 8’s and v’s are functions of D-D, B-B and (B-D)®. Equations (2.4) may also
be obtained by inversion of (2.1) and (2.2). If the dependence of E and H on D and B
indicated in (2.3) is polynomial dependence, then the «’s, 8’s and v’s in (2.4) are poly-
nomials in D-D, B-D and (D-B)*.

If D and B are not parallel than it follows from the third of equations (2.4) that J
has, in general, a component in the direction perpendicular to the plane of D and B.
This is, of course, the well-known Hall effect and occurs even if in the constitutive equa-
tions we neglect terms of higher degree than the second in D and B.

The first of equations (2.4) indicates the possibility that if B and D are not parallel,
E may have a component in the direction perpendicular to the plane of B and D. We are
not aware that such an effect, which we may call the transverse electric effect, has been
observed.

The second of equations (2.4) indicates the possibility that if B and D are neither
parallel nor perpendicular, H may have a component in the direction perpendicular to
the plane of B and D. Again, we are not aware that such an effect, which we may call the
transverse magnetic effect has been observed.

Now, suppose that the o’s, 8’s and 4’s are polynomials in D-D, B-B and (B-D)? and
we assume that B and D are small. We may then obtain an Nth order approximation to
each of the constitutive equations (2.4) by neglecting terms of degree greater than N
in B and D. We note that second-order constitutive equations yield a transverse electric
effect but not a transverse magnetic effect. The transverse magnetic effect is obtained
only with approximations to the constitutive equation for H of order four or greater.

3. Conservative systems. We shall now assume that the material is ideally non-
conducting and shall consider only isothermal behavior. Then, the energy balance equa-
tion for a region V of the material bounded by the surface 4 is

_f (E X H)-dA = f (H-B 4+ E-D)dV, (3.1)

where dA is a vector element of area of the surface 4, and we use the dot to denote dif-
ferentiation with respect to time. The term on the left-hand side of equation (3.1) rep-
resents the rate at which electromagnetic energy flows into the region V and the term
on the right-hand side represents the rate of increase of electromagnetic energy in the
region. Integrating (3.1) with respect to time over the interval ¢, to ¢, , we obtain

—f dth(E X H)-dA = f dt fv (H-B + E-D)dv. (3.2)

The term on the left-hand side of (3.2) represents the energy flowing into the region V
in the interval ¢, to ¢, and that on the right-hand side represents the increase in elec-
tromagnetic energy in the region in this interval.

Now suppose that E and H are each single-valued functions of D and B. We consider
that D and B undergo closed cycles of variation in the time interval ¢, to ¢, , so that their
initial and final values are the same. The integral on the right-hand side of (3.2) must
then be zero. If it were not, the total flow of electromagnetic energy into ¥V would be
either positive or negative. If it were positive, then by taking D and B round the closed
cycle in the opposite direction, the flow of energy into V would become negative. Re-
peated execution of such a cycle would enable us to continually extract energy from the
volume. Since this is not possible, we have
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55fV (H-dB + E-dD) dV = 0 (3.3)

for all closed cycles of B and D. The relation (3.3) is, of course, valid for all regions V of
the material and hence, since E and H are functions of B and D only, we may write
E-dD + H-dB as a total differential, thus:

dW(B, D) = H-dB 4+ E-dD. 3.4)

Whence, we obtain
E = 0W/4D, H = oW /4B. 3.5)

For an isotropic material possessing a center of symmetry, it is easily shown that W
must depend on B and D through the isotropic invariants I, , I, , I; defined by

I, = D-D, I, = B-B, I, = (B-D)°. (3.6)
Then, from (3.5), we have

E = 2[— D+ 93’ - B D)B] .

oW W
H = 2[6123 + 51 B D)D:l

Comparing equations (3.7) and (2.4), we see that for a conservative system

doy Aoty 0oy 9B das 9B,

a[3 —6111 612 _all ’ E_Ey (¥2=63=0, a3=BZ' (3'8)

We note that in this case neither the transverse electric nor the transverse magnetic
effect can exist.

4. Materials with memory. We now replace the constitutive assumption (2.3) by
the assumption that the values of E and H at the instant of measurement ¢ depend on
D(r) and B(r), the values of the electric displacement and magnetic induction vector
at time 7, for all times 7 up to and including the instant of measurement; i.e., E and H
are functionals of D(r) and B(r) thus:

= E[D(-), B()], H = H[D(:), BO)]. (8.1

We now restrict our considerations to electric displacement and magnetic induction
fields which vary with time in a specified manner, thus:

D(r) = ¢(nD’,  B(r) = ¥(1B’, (4.2)

where D’ and B’ are independent of time. Then, we may replace the functional depend-
ence of E and H on D(r) and B(r) by function dependence on D’ and B’, this function
dependence depending on the functions ¢ and ¢. If we now make the assumption that the
material is isotropic and possesses a center of symmetry, the constitutive equations for
E and H take the forms

E = o,D’ + a,D’ X B’ + a3(D’-B’)B/,
= BB’ + ﬁr_;(D"B')D' + ﬁ3(D"B')D' X B,

4.3
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where the o’s and B’s are now functions of D’-D’, B’-B’, (D’-B’)* and ¢ and depend on

¢ and ¢. These equations indicate the possibility of both transverse electric and magnetic
effects.
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Corrections to the paper
FINITE PURE BENDING OF CIRCULAR CYLINDRICAL TUBES
Quarterly of Applied Mathematics, XX, 305-319 (1963)

BY E. REISSNER AND H. J. WEINITSCHKE
(M assachusetts Institute of Technology)

The numerical values in Table 2 of this paper should be corrected in such a way
that Table 2 now reads

numerical
2 terms 3 terms 4 terms solution
a, 1.633 1.439 1.541 1.66
M, 1.089 1.002 1.034 1.06

The above values of o, and m, are in agreement with the corresponding values in Figure 2
of the original paper.



