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APPLICATION OF CONSERVATION LAWS TO THE ASYMPTOTIC
PROPERTIES OF HYPERSONIC FLOW*

By J. M. RICHARDSON (Hughes Research Laboratories, Malibu, California)

Summary. The conservation laws involving mass, momentum, and energy are
utilized for the derivation of a set of exact relations between the drag force on a body
moving at hypersonic speeds through air and certain integral properties of the wake at
great distances downstream. The above integral properties involve the surface integrals
of the deviation of the hydrodynamical variables from their ambient values. The surface
in question is a plane perpendicular to the wake axis. Explicitly, the relations state
that all of the surface integrals just defined are proportional to the drag force with
proportionality factors that are given functions of the ambient values of the hydro-
dynamical field variables. The results are valid if the plane cutting the wake is sufficiently
far downstream that the deviations of the field variables are small relative to their
ambient values everywhere on this plane and if irreversible processes are negligible
there.

1. Introduction. This paper applies the conservation laws pertaining to mass,
momentum, and energy to the determination of certain integral properties of the asymp-
totic part of the wake of a body moving at hypersonic speed. On a surface cutting across
the wake is sufficiently far downstream, it can be assumed that the hydrodynamical
field variables deviate little from their ambient values and that dissipative processes
are occurring to a negligible extent. In this case a set of equations can be derived that
express linear relations between the drag force and surface integrals of the deviations
of the field variables from their ambient values. These relations, although simple, do
not appear to be well known.

In the model a fictitious body force, equal and opposite to the drag force, keeps
the body moving with constant velocity in a homogeneous atmosphere.

2. Integral form of the conservation laws. Let us consider a frame of reference
with a fixed closed surface S moving with the body. Furthermore, let us assume that
the body is located inside the closed surface but sufficiently far from it that on it the
atmosphere is in local equilibrium and involves negligible transport effects (i.e., negligible
shear stress, pressure given by equation of state, negligible heat flow, etc.). The conser-
vation of mass, momentum, and energy is expressed by the following integral relations:

J dS-pu = 0 (1)

J dS-(puu + Ip) = — Fd (2)

J dS ■ pu(h + W) = 0 (3)
where the integrations span the closed surface S. The symbols are defined as follows:
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dS — ndS, n = outward pointing normal vector and dS is a scalar area element, p =
density, u = velocity (with respect to body), p = pressure, h = specific enthalpy (all
of the quantities p, u, p, and h pertain to air at an arbitrary position, either in the incident
ambient stream or in the wake), I = unit tensor, FfJ = drag force on body.

Using the relation

/ dS = 0, (4)
and remembering (1), we write

* PO^O = 0} (5)fdS;

f dS ■ (puu0 + Ip0) = 0, (6)

f dS-pu(ho + Wo) = o, (7)

where the subscript 0 denotes the properties of the ambient atmosphere. Subtracting (5),
(6), and (7) from (1), (2), and (3), respectively, we obtain

J dS-(Pu - p0Uo) = 0, (8)

J dS- [pu(u - u„) + I(p - p0)] = — F„ , (9)

/ dS-pu[(h — ho) + h{u2 — w?)] = 0. (10)

It is possible now to limit the surface integrations to that part of the surface S on which
the ambient and actual properties differ, that is, the part lying within the nearly conical
shock. Let us denote this part of S by the symbol S'.

3. First order integral relations. In the present section the earlier integral relations
are specialized to the case in which on S' the deviation of actual from ambient properties
is small in a certain sense. Several alternative requirements must be met for this situation
to be achieved:

a. The body is sufficiently slender and pointed so that the deviation from ambient
properties is small everywhere except perhaps in the boundary layer.

b. Alternatively, in the case of a blunt body, the surface S' must be sufficiently far
downstream that the pressure has subsided nearly to ambient and that turbulent
mixing can reduce the specific entropy close to ambient. Also, the stoichiometric
composition must deviate negligibly from its ambient value on S'.

We assume that the incident ambient air is moving in the positive z-direction, i.e.,
u0 = lgUo, and hence Fj = \zFd . For simplicity, let us require the surface S' to be the
part of a plane perpendicular to the z axis that is bounded by the conical shock front (see
Fig. 1). Thus, as indicated by the figure, the boundary of S' is a circle of radius R. The sub-
script 1 can be used to denote the deviation of any quantity from its ambient value, and
any term that is linear in a deviation can be described as "first order." We consider
averages over the surface S' defined by
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Fig. 1. Geometry of the wake and the surface

0-jIds«~^l "dr■ (11)
where g is an arbitrary function of the radius r, A( = tR2) is the area of S', and the
integration extends over S'. We choose as fundamental state variables the density p,
the pressure p, the temperature T, and the velocity u. Assuming perfect gas behavior,
we can write

h = h(T), (12)

p = p(RT/3TI, (13)
where (R is the gas constant (per mole), 3TC is the effective molecular weight of air, and T
is the absolute temperature.

On the basis of the above assumptions and definitions, equations (8), (9), and (10),
retaining only first order terms, reduce to

PoW*i + Uopi = 0, (14)

p0u0uzl + p! = -Fd/A, (15)

Cv7\ + M0Mal = 0, (16)

where u2l is the 2-component of u1 and cv = dh/dT is the specific heat at constant pressure.
The above set of equations must be supplemented by the equation of state (13), which
in first order and with surface averaging can be written

p> = (fft/arcXroP! + PoT\). (17)



1966] NOTES 363

Equations (14), (15), (16), and (17) are a set of four linear equations with the four
dependent variables px , pi , T\ , and uzi . Solution of this set yields

APl = 2x Jo r drPl = ^ : _\{-> , (18)

Api = 2ir JK r drp1 = (y - 1 )Fd 1 + ' , (19)

AT> = 2tt [ r drTx = , (20)

ylw,! = 2T f r drutl = ~~~ ^ 17=2" (21)
Jo Po^o 1 -M-

In the above expression y is the ratio of specific heats at constant pressure and at constant
volume, respectively, and M = u(l(y\l/y(S{T„)l/2 is the free stream Mach number. These
equations relate four different surface integrals in a simple manner to the drag force Fd .

In the limit of large Mach number (M » 1), the above results reduce to a simple
form:

Ap, = ^ , (22)
u0

Api = (t - 1 )Fd, (23)

AT\ = 311(7 ~ X)Fd , (24)
(Rp0

Auml = (25)
PoUq

The relative errors in the above expressions are of the order of M~2 and thus, for example,
when M = 10, the relative error is about 1%.

It is interesting to rewrite the above results in terms of the relative changes from
ambient values. We obtain (again in the limit of large M)

h. _ = f" (26)
Po Mo M p0A

Pi = Ti = (t - l)^y (27)
Po T0 p0A

It is of interest to note that pi/p0 and —uzl/ua are smaller than pi/p0 and T\/T„ approxi-
mately by a factor 1 /At2. However, it should be emphasized that |pi/p0| or \tizi/u0\ at
an arbitrary value of the radius R is not necessarily smaller than pi/p0 by a factor of
l/M2. Leaving this qualification aside, equations (26) and (27) suggest that the main
effect in the asymptotic part of a hypersonic wake is thermal, since the changes in
density and velocity in a surface-average sense are negligible and the changes in pressure
and temperature are equal in the same sense.

On the basis of the above remarks it is of interest to consider the total flow of excess
heat through the surface Sf. To the first order the deviation of the specific entropy from
its ambient value is given by
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ToSi = K-^= ®yTl , - 2i- (28)
Po 311(7 — 1) Po

Using (19) and (20) we find that the total flow of excess heat through S' is given to
first order by

Q = 2ir r drp0u0Tas2 = Ap0u0{~^—^ T1 — ~ p,"j = Fdu0 . (29)

The result implies that in the asymptotic part of the wake the work performed in pulling
the body against the drag force is converted in first order entirely into heat convected
through S' and that the mechanical energy carried in the shock wave is of higher order.
The shock wave in the neighborhood of a blunt body carries appreciable energy; however,
it is converted into heat through dissipation at the shock front until the wave attains
a lower amplitude in the larger asymptotic part of the wake.

4. Conditions of validity. The linearization involved in the derivation of the results
of the last section is valid if the magnitudes of the ratios pi/p0 , Pi/Po , T1/Ta , and
usi/u0 are small compared with unity everywhere on the surface S'. A necessary (but
not sufficient) condition for the validity of the linearization is that the surface averages
of the above ratios (i.e., pi/p0 , etc.) be small compared with unity. Let us consider
the condition

pl/p0 « 1. (30)

Use will be made of the well known expression for drag force

Fd = \CDA*Paul , (31)
where CD is the drag coefficient of the body and A* is its nominal frontal area. With
the use of (27) and (31) it is possible to reduce (30) to the simple form

L/a » M\ (32)
where L is the distance between the body and the surface S' (see Fig. 1) and a is a
characteristic radius of the body (e.g., a = (CDA*/ir)1/2). Since L = MR, the last con-
dition expressed in terms of R reads

R/a » M. (33)
Thus the surface S' must be at least at a distance M2a from the body in order that
the linearized theory of Section 3 be valid. Consideration of the smallness of the ratio
T\/Tn leads to identical results while the consideration of pi/p0 and uzi/u0 leads to a
condition much weaker than (32).

Actually, in the case of blunt bodies, a distance very much larger than M2a may
be required for turbulent mixing to degrade the specific entropy to the neighborhood
of its ambient value.


