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THE INITIAL VIBRATIONS OF A SPINNING SHELL*
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Abstract. In this paper, we have studied the initial angular motion of a spinning
shell with an overturning and yawing moment and shown that the frictional effects
provided by the yawing moment change the initial rosette motion of the shell to one
with a non-zero minimum yaw.

1. Introduction. It is well known that the initial angular oscillations of a spinning
shell are very similar to those of the axis of a spinning top under gravity. If, as a first
approximation, one assumes the center of gravity of the shell to move uniformly in a
straight line and ignores the frictional damping forces, the angular motion of the axis
of the top and that of the shell are identical, provided that (i) the top and the shell
have the same axial spin and axial moment of inertia, (it) the transverse moment of
inertia of the top about its point of support equals the transverse moment of inertia of
the shell about its center of gravity, and (Hi) the moment of the force of gravity about the
point of support of the top equals the moment of the aerodynamic forces on the shell about
its center of gravity. To this degree of approximation, the formal solutions of the two
problems are identical. The yawing motion of the spinning shell has been completely
worked out in this way by Fowler, Gallop, Lock and Richmond [1], and Fowler and
Lock [2] in two separate papers. These authors also conducted a series of experiments
to study the nature of air forces acting on fairly stable and on slightly unstable pro-
jectiles and analysed the initial angular oscillations of these projectiles. Their experiments
show that after the first half-period of oscillation the initial rosette motion of the shell
axis changes to one with a non-zero minimum yaw. If, however, one solves the corre-
sponding top problem in terms of elliptic functions, as has been done by these authors,
the aforesaid angular motion remains far from being explained. This apparently unex-
plained motion is supposed by Fowler and Lock to be due to the dissipative effects
produced by "other couples" depending on the angular velocity of the shell axis and
also by the lateral motion of the center of gravity of the shell.

In this paper, we study the effects of damping on the initial yawing motion of the
shell. As these effects are mainly due to the "yawing moment" we have taken this
moment into consideration in addition to the tilting moment that tends to increase
the yaw** of the shell. Treating the damping effects as weak***, we have obtained an
approximate solution of the equation of yawing motion of the shell. This is in fact the y

*Received July 16, 1964; revised manuscript received January 8, 1965.
**Yaw is the angle which the axis of the shell makes with the direction of motion of the center of

gravity of the shell.
***Cf. [1], Sections 3.5 and 4.12.
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type of equation of Fowler et al. corrected for the damping effects provided by the
yawing moment. The "yawing moment" is thus seen to be responsible for changing
the nature of the initial yawing motion of the shell from rosette motion to one with a
non-zero minimum yaw. The minimum and maximum yaw attained by the shell during
the initial oscillations of the shell axis have been calculated and shown to agree well
with the observed values given by Fowler et al.

The solution we have obtained in this paper applies only to stable shells, where the
yaw in the initial motion does not change considerably, since we have taken for the
tilting moment an expression which corresponds to a slow yawing motion of the shell.
For unstable shells, where the initial variations of yaw could be large, a Fourier expansion
must be made up to two terms of the moment coefficients as has been done by Fowler
and Lock. It is hoped that a solution of the corresponding problem for unstable shells
with nonlinear tilting moment can be obtained in a similar manner. By comparison
with the observed variation of yaw it should then be possible to determine the damping
coefficient of the yawing moment for unstable shells.

2. Aerodynamic moments influencing motion. The complete aerodynamic force-
system influencing the motion of a spinning shell consists of five forces and five couples
resolved along and normal to the axis of the shell. The definition of these forces is given
by Nielsen and Synge [3], and their complete vector specification by one of the present
authors [4]. Out of the five air couples, the two that are supposed to influence the motion
under study are (i) the tilting or overturning moment, tending to increase the yaw of
the projectile and (ii) the yawing moment. The latter diminishes the cross angular
velocity of the shell and thus provides a damping effect on the initial oscillation of the
shell axis. The two air couples considered here are called by Nielsen and Synge "the
cross torque due to cross velocity" and "the cross torque due to cross spin". According
to [1] these torque vectors are given by

M = ju(k X A), (2.1)

H = —hB(k X k'), (2.2)
where the prime indicates differentiation with respect to time, and k and A are unit
vectors in the direction of the axis of the shell and parallel to the direction of motion
of the centre of gravity. Other notations are as explained in [1]*. It is convenient to
write

n = Btf/4s, (2.3)
where

ft = Au3/B. (2.4)

Here, co3 is the axial spin of the shell and A and B are its axial and transverse moments
of inertia (about the center of gravity). When the yaw does not exceed say 10°, the
moment factor is independent of yaw and assumes the form (2.3).

3. Assumptions. (A.l) With Fowler and Lock we assume that the center of gravity
of the shell moves uniformly in a straight horizontal line. This happens when the shell
is fired horizontally with a large initial velocity, so that the analysis applies to the
initial motions only. During this period the force due to gravity may be neglected.

*See [1], pp. 328-334.
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(A.2) We also assume that the damping effect of the yawing moment is weak. This
is in agreement with the observations of Fowler et al. As a result of this assumption
we have

« = h/Q « 1. (3.1)
(A.3) The axial spin co3 is constant during the considered motion.
4. Equations of angular motion. Let OA denote the direction of the axis and OP

the direction of motion of the center of gravity of the shell. The angle of yaw then
is Z.AOP = 8. Let <j> be the angle which the plane of yaw AOP makes with a fixed plane
through OP. If the unit vectors along OA and OP be denoted by k and A, the angular
velocity <o of the shell can be resolved according to u = co3k + f, where ? is the cross
angular velocity vector. Thus, k' = ? X k and ( = k X k', and the angular momentum is

H = B% + Au>ik = B(k X k') + Au^k.
If G is the torque due to the air forces, we have

dH r
'di=G'

j e B(k X k") + Am3k + Au3k' = G, ^

B(k X k") + Au,k' = G,
where

G = A X k) — hB(k X k').

According to (A.l), we may write

A = (1, 0, 0), k — (I, m,n),

k' = (/', m'.O, k" = (I", m", n").
(4.2)

In these relations (I, m, n) are the direction-cosines of the shell axis with respect
to a set of fixed coordinate axes OXYZ, where OXY is the plane of fire and the axis OZ
is to the right of the gunner, so that one has

I = cos 8, m = sin 8 cos <t>, n = sin 8 sin 4>. (4.3)

Projecting the vector equation (4.1) along the vectors A and k X k' and making use
of Eqs. (4.2) and (4.3), we have

(£2 cos 8 + 0'sin2 8)' + h<t>' sin2 5 = 0, (4.4)

|(5'2 + 4>'2 sin2 8)' + h(8'2 + <t>'2 sin2 8) = ~(n/B)(cos 5)'. (4.5)

If we put h = 0 in these equations (i.e. when there is no damping effect due to a yawing
moment), we obtain after integration

4>' sin2 5 + cos 8 = E, (4.6)

(8'2 + 4>'2 sin2 8) + J (2?/B) d(cos 8) = F, (4.7)

where E and F are constants of integration. These are precisely the equations considered
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by Fowler and Lock. When n is constant, they represent the integrals of energy and
angular momentum equations of an equivalent spinning top.

Our aim is to study Eqs. (4.4) and (4.5) for a constant y..
5. The nonlinear equation in yaw. With

c = cos 5, (ju/B) = (a2/is) (5.1)

Eqs. (4.4) and (4.5) can be written as

(<£' sin2 8)' + h(4>' sin2 8) = — (ftc')>

(5' -f- <t>'2 sin 8)' -)- 2h{5'2 -f- <£/2sin2 8) = —(Q2/2s)c'.

On integration they give

(<t>' sin2 8) exp (ht) = — 0 J c' exp (Jit) dt + E,

(8'2 + <£/2sin2 8) exp (2ht) = —(S22/2s) J c' exp (2ht)dt + F,

where E and F are constants of integration to be determined from the initial conditions.
Eliminating <t>' between the preceding equations, one obtains the equation of yaw

in the form

c'2 exp (2ht) + |E — J c' exp (ht) dt^j

+ (1 — c2)|(fi2/2s) J c' exp (2ht) dt — = 0. (5.2)

Differentiating (5.2) three times with respect to t, we have

(c' - he) {civ + 2he"' + (fi2 + h2)c" - ~ {cc" + c'2) - £ hcc'} - (c" - 3he' + 2h2c)

C>» + 2Ac" + (O2 + h2)c' - ycc' +^h( 1 - c2)| = £ c'(c' - he).

In this equation we write

t = Qt (5.3)
to obtain, with some re-arrangements of terms,

t *F> = 0- (5-4)
v = 0

where*
F0 = c'civ - c"c"' - (3/2s)c'3, (5.5)

F1 = -cciv + 5c'c'" - c"^2c" + 1 ~s5c' + c} - 3c'2(c/2s - 1), (5.6)

F2 = -4cc'" + 6c'c" - c'<2c - (3 + 5c2)} , (5.7)

*Prime now denotes differentiation with respect to t.
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F3 = -5cc" + 3c'2 - (1 - c2)c/2s, (5.8)

Ft = -2cc'. (5.9)
Equation (5.4) describes the yawing motion of the shell.

6. A sinusoidal approximation to the undamped motion in yaw. It follows from
the preceding analysis that the undamped motion in yaw is given by

c'civ - c"c"' = (3/2s)c'3. (6.1)

Assuming an initial rosette motion with Fowler and Lock, we stipulate the initial con-
ditions as

c = 1; c' = 0; c" = — b2 at r = 0, (6.2)

where b measures the size of the initial disturbances which upset the nose-on motion
of the shell. This is of small magnitude say, of the order 10~3.
If we set

(c"'/c') = I - 1 - b\ (6.3)
o

and use conditions (6.2), Eq. (6.1) reduces after three integrations to the well known
equation of a top

c'2 + (1 - c)2 + (1 - c2)(c/2s - b2 - l/2s) = 0, (6.4)

an equation that would have normally followed from (4.6) and (4.7) by eliminating <j>'
between them and subjecting them to the initial conditions.

A solution of (6.4) in terms of elliptic functions is given by

c — 1 — 2 sin (A/2)cn(K — \pr, k), (6.5)

where A = max 5, K is the complete elliptic integral of the first kind of modulus k and
the factor \p is given by

sin (A/2) ,n* - -mr~ m
A sinusoidal approximation to (6.5) is

c = a + /? cos Xr, (6.7)

where
a + j3 = 1, p = sin2 A/2, X2 = 62/8 + j8/2s. (6.8)

This may be proved as follows.* The general solution of (6.4) may be written as

T = / 7 — , (6.9)
Ys {(«! - c)(c - l)(c - a2)}1/2

where

a2 > 1 > -f- a2 — 2s(l -f- b2), ctia2 — —(1 — 2s + 2 sb2). (6.10)

*Cf. [4], pp. 284-285.
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Since, throughout the motion, < c < 1 and therefore a2 — 1 < a2 — c < o>2 — a! ,
it follows from (6.9) that

a2 ~ l\~1/2 . fa2 - ai\~1/2
———J" cos k > t + const., > j———> cos k,

where

1 — c 1 + a,
a = —r— , k = —^ 2 a 2a

If ax comes close enough to unity, which happens when the shell spins fast enough to be
stable, and if we set 1 + al = 2a, we obtain

. fa2 - <7\"1/2 J2(C - ar)
t + const = S—;r-—7 cos S— I 2s J I 1 - «i

which under the initial conditions reduces to (6.7).
7. An approximate solution of the yaw equation with damping. Consider the

equation (5.4). We assume an asymptotic solution of this in the form

c = a + (3 cos \t + ec^r), (7.1)

since /3 and « are much less than unity. When substituted in (5.4) this yields

m + e\M) + • • • = 0, (7.2)
where

L = —X sin Xt(cJv -f- X2cJ') -(- X2 cos Xr(c{" -1- \2c' -f- K), (7.3)

M = cicr - c['c[" - acjT - c['(K + aX2), (7.4)

K = ^(1 - 5a2) +a(l - X2). (7.5)

Terms of orders in excess of 2 in /3 and e are not shown in (7.2), since we shall not be
needing them for our solution.

It is not difficult to see that

L = M = 0 (7.6)
if

civ + X2cf = 0, (7.7)

c[" + X2c( + K = 0. (7.8)

In fact, (7.7) is obtained by differentiating (7.8) with respect to r. The initial conditions,
as stipulated by Fowler, are

5 = 0, 5' = b when r = 0.

From these we have

c[(0) = 0, c,"(0) = /3X2 - b2. (7.9)

Solving (7.8) with the use of (7.9), we get as approximate solution of the equation
of yaw (5.4)
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c = (1 — 62/X2) + (62/X2) cos Xr — (Ke/\3)(\T — sin Xr). (7.10)

Subsequent calculations show that the constant K is of extremely small (positive) mag-
nitude. For stable shells it turns out to be roughly of the order 10~4.

8. The nonzero minimum yaw. If dn and Dn denote the minimum and maximum
values the yaw assumes in the nth half-period of vibration of the shell axis, a straight-
forward calculation from (7.10) yields

sin2 (dn/2) = nirKe/\3, (8.1)

sin2 (DJ2) = 62/X2 + (Ke/\3)(riT — tan-1 ~j^J• (8.2)

The time period between two successive minima or maxima is given by 2ir/\Q.
This shows the frequency of oscillations of the shell axis is the same for the damped
and the undamped motion characterised by the approximate solutions (7.10) and (6.8).
This is not strictly true. But for stable shells, it gives a fairly accurate result. Also
from (8.1) it is clear that for K > 0 subsequent minimum values of yaw go on increasing
steadily starting from a zero initial value.

For the axis of the shell to come to a position of equilibrium yaw, after the initial
vibrations are damped out, the maximum yaw given by (8.1) must decrease steadily
with increasing time. But this does not follow from (8.1); on the contrary we observe
that the maximum yaw increases. This shows that the solution (7.10) cannot be con-
tinued too far as is obvious from the presence of a secular term in it. The first nonzero
minimum yaw predicted by (7.10) agrees however well with observation, as is seen
from Table I.

9. Concluding remarks. The present solution does not work for unstable or just
stable shells. In the latter case k turns out to be negative and hence no minimum yaw
can be correctly predicted. For unstable shells, where the initial variation of yaw is
relatively large, say, with an initial maximum of 15°, the calculated variation of yaw

Table 1
Table showing the observed and calculated values of maximum and minimum yaw of a spinning

shell during the 1st half period of vibration of the shell axis.

(1): No. of the group and rounds fired
(2): Stability factor s = /?Q2/4y
(3): X2 = &2//S + 0/2s
(4): 0 — sin2(A/2) (103/3 is tabulated)
(5): k = (1 — 5a2)/4s + a(l — X2) (103 k is tabulated)
(6): « = h/i2
(7) & (8): calculated values of the first minimum d\ and maximum Di (in degrees) using formulae

(8.1) and (8.2)
(9) & (10): observed values of di and Di (in degrees)

12 3 45 6 789 10

1-24 1.61 0.379348 0.675 0.163 0.0150 0.656 3.0 +0.4 2.8
1-28 1.74 0.425892 0.848 0.126 0.0102 0.45 3.35 -0.4 3.1

11-23 1.94 0.484836 0.404 0.0130 0.0121 0.1 2.3 +0.3 2.3
III-22 1.84 0.456983 0.632 0.0545 0.0104 0.266 2.9 -0.1 3.5
IV-25 1.525 0.344701 0.653 0.204 0.0150 0.8 2.9 +0.0 2.2
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is not in good agreement with observation. To predict the initial variation of yaw in
such cases, the dependence of the factor n of the tilting moment on yaw must be treated
more precisely as has been done by Fowler and Lock. If the corresponding problem
for unstable shells can be solved, this will make possible a quantitative estimate of
the damping factor provided by the yawing moment. The authors hope to solve this
non-linear problem by a method essentially similar to that of the present paper.
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