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A NONLINEAR THEORY OF PLASTICITY FOR PLANE STRAIN*

BY

E. M. SHOEMAKER**
Sandia Laboratory, Albuquerque, New Mexico

Summary. A nonlinear theory of plasticity is proposed which facilitates the solution
of a restricted class of plane strain problems. An anisotropic approximation to a real
material is utilized with the characteristic directions chosen a priori. The formulation
is in terms of displacements and sufficient displacement boundary conditions must be
prescribed in order to solve the resulting classical wave equation. Subsequently, the
stress field is determined, corresponding to any nonlinear monotonic relation between
shear stress and strain, by direct integration of the equilibrium equations. Uniqueness
restricts the class of problems suitable to the theory. Classical isotropic theory will
be closely approximated in problems where the deviatoric stress field is predominantly
uniform. The theory is illustrated by the solution of an indentation problem.

1. Introduction. The idea of approximating the ellipsoidal cylinder which is the von
Mises yield surface for plane strain by a piecewise linear yield surface has been pre-
viously applied by the writer [7]. This formulation utilized the four planes shown in
Fig. 1 although other approximations are equally acceptable. The theory was aimed
at the limit load problem of perfect plasticity and resulted in a linearization of the field
equations. Onat and Prager [2] previously applied a linearization procedure to solve
the problem of a tension specimen in plane flow.

One difficulty which was not surmounted is inherent in any rigid-plastic or elastic-
plastic theory and results from the fact that the material behavior must be characterized
by two expressions. The inevitable consequence is two distinct sets of field equations
whose corresponding domains cannot in general be determined analytically. The same
difficulty is encountered in the elastic-plastic torsion problem where it is more easily
delineated (Prager and Hodge [1]). It has long been recognized that this difficulty is
removed if the material behavior is characterized by a single expression. Unfortunately,
such a formulation for a stress-type boundary-value problem will always be highly
nonlinear.

This paper develops a nonlinear deformation theory of plasticity for plane strain
which approximates an isotropic hardening von Mises loading surface by an isotropic
hardening piecewise linear loading surface, Fig. 1. Plastic incompressibility is inherent
in the choice of the loading surface. Elastic dilatational strain is neglected and the
elastic deviatoric strain is restricted to be codirectional with the plastic strain. In common
with all deformation theories, unloading is ruled out; consequently, the theory reduces
to a nonlinear incompressible elastic theory. The stress-strain law is assumed to be
monotonically increasing but otherwise arbitrary; although, for convenience, this
relation should be expressible in terms of a single analytic expression whose inverse
may be found explicitly. The present development is restricted to small displacements.
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Fig. 1. von Mises yield ellipsoidal cylinder with inscribed piecewise linear yield surface and isotropically
expanded loading surface.

The theory is formulated in terms of displacements and its application is restricted
to problems where sufficient displacement-type boundary conditions are known in
order to determine the displacement field independent of the stress field. (It will be
seen that because the displacement equations are hyperbolic the boundary conditions
must contain both stress-type and displacement-type conditions.)

This development was motivated by the need to determine the pressure distribution
on the contact faces of pistons used in high pressure research investigation (Balchan
and Drickamer [6]), where the permanent displacements at the boundary are easily
measured. Other problems which appear to be amenable include pressing between
rigid dies, extrusion, and certain problems of indentation, one of which is used to illustrate
the theory.

2. General development. In applications of the theory we shall assume that the
stress field lies on a single branch of the loading surface. (This is not a general restriction
as will be seen in the discussion of uniqueness. However, the more general problem is
of a higher order of difficulty. Also, under this restriction the theory will be shown to be
equivalent to an incremental theory.) This assumption places restrictions upon the
displacement boundary conditions which will be discussed. As in the writer's perfectly-
plastic theory [7] the displacement field is hyperbolic and the characteristic coordinates
are rotated counterclockwise through a fixed angle 0 with respect to the Cartesian
system (x, y) which may be chosen to approximate some anisotropic material behavior
but is otherwise arbitrary. The system (x, y) can vary continuously in direction through-
out the body but will have fixed directions in the present development. Corresponding
to the A, A and (B, B) branches of Fig. 1, /3 = —tt/8 (+ir/8).

Consider a particular branch of the loading surface and let (£, tj) be the characteristic
coordinates and (u, v) the corresponding displacements. Since the characteristic directions
are directions of pure shear, the shear strain is given by
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du . dv
7£< = yv + ak (1)

whereas the normal strains vanish. Consequently,

Sr °- % = °- (2)
and integration immediately renders the general solution

«(£> 17) = /(t?) , (3)

t'G, >?) = ffft). (4)
From Eq. (1) the shear strain is given by

Yt, = 1'(v) + g\Q- (5)
It is clear that displacement boundary conditions which are sufficient to determine
the displacement field are very similar to conditions required by the classical string
equation. The fundamental problems are the Cauchy problem and the Riemann problem
pertaining to open regions. Obviously, assigning the displacement vector over a closed
boundary is to overprescribe the side conditions.

The shear stress r£, is determined immediately through some suitable monotonic
stress-strain relationship. An example would be the empirical law

7£, = t(jg + KrY: (6)

which closely approximates the behavior of most work hardening metals. Prager's law,

rt, = Y tanh 7{,j (7)

in which Y is the limiting shear stress, expresses the stress explicitly in terms of strain
and approximates the behavior of a perfectly plastic material.

Assuming t£, known, the normal stresses o-£ , a, are obtained through integration
along the respective characteristics of the equilibrium equations

daj _ _djj1 ,g\
di• dij '

  ^rti /qn
dv d( '

Sufficient stress-type boundary data must be prescribed in order to determine the
initial conditions.

Because the displacement field is the solution of a hyperbolic equation, any dis-
continuities in boundary displacements will propagate into the interior along the char-
acteristics as can be seen from Eqs. (3) and (4). Displacement boundary data must
be prescribed so as to rule out this possibility. Continuity of boundary displacements
is a necessary but not a sufficient condition to insure this condition as will be illustrated
by a later example.

Discontinuities in the derivatives of boundary displacements lead to discontinuities
in shear stress t£, across characteristics, from Eq. (5). Consequently, in order to satisfy
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equilibrium, boundary displacements must be at least smooth. There still remains
the possibility for the usual stress discontinuities (Hill [5]).

3. Uniqueness. It is possible to establish uniqueness for the mixed boundary-value
problem sketched in the previous section. (We do not limit the stress vector to lie on
a single branch of the loading surface.) Consider a finite body where at each point on
the boundary either the surface traction vector, the displacement vector, or the tangential
component of one and the normal component of the other are defined. The uniqueness
proof proceeds in the usual fashion (Hill [4]). Assume that two solutions to such a problem
exist. Since displacement discontinuities are ruled out, the usual application of the
principle of virtual work renders

(<r1(;.) - - ««>) dV = 0. (10)

For the present case this becomes

(s!° - s!2,)(e"' - el2') dV = 0, (11)

where Sj and e< are defined in Fig. 2.

Fig. 2. Geometric representation of stress and strain deviators with isotropic hardening linearized
loading locus. For the case shown, |eCi>| > le'i'l; si = (cr„ — ax), s2 = tiv , ei = (ev — ex), e2 = 2yiV

with ex + ey = 0.

The stress-strain relation in this (x, y) coordinate system, as opposed to the char-
acteristic coordinates of Eqs. (6) and (7), is conveniently written as

e,- = KM + 2 |s2|)n,- (12)

with h a positive monotonic increasing scalar function and the unit outer normal to
any of the four branches of any loading surface of Fig. 2. (In general, at a corner, n,
can have any direction in the fan angle between the outer normals to the adjoining
branches.) We note the assumption that the loading surface expands isotropically;
Eq. (12) also assumes the strain magnitude to be dependent upon the hardening function
h but otherwise independent of the strain direction.
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Substitution of Eq. (12) into Eq. (11) establishes that the integrand is positive
except for two cases. The first, when s-u = s-2) implies that e,a) = ej2) except at corners.
Uniqueness of the characteristic shear stress r£, follows from uniqueness of s,- even at
corners where the orientation of the characteristic coordinates is arbitrary. Moreover,
if we restrict the direction of ei at corners to be normal to either side the strain energy
is unique. Secondly, the integrand of (11) is zero when e-1' = e-2). Uniqueness of r£„ as
well as the strain energy follows for this case.

Uniqueness of normal stresses <yl and <r, is not obtained by this development but
follows directly from the integration of Eqs. (8) and (9), along with the fact that r£, is
unique, provided that in the particular problem considered one and only one initial
condition is prescribed along the characteristic.

These results depend upon the assumption of isotropic hardening. The integrand
of Eq. (11) can be negative if the four branches of the loading surface are permitted
to expand independently as in Fig. 3 or as in slip theory (Batdorf and Budiansky [3]).

Fig. 3. Anisotropic hardening leads to nonuniqueness. Here, independent hardening of each branch,
e.g., a translation of side ab into a'b', gives (s'J' — s'i'Xe'!' — e'j') < 0. With no hardening on remaining

three branches, |e(l'| = leTl for the case shown.

Clearly, this deformation theory is equivalent to an incremental theory provided
that in the solution of a given problem by the corresponding incremental theory some
loading sequence exists such that at each point in the material the same loading branch
applied throughout the loading process. In particular, for a problem where only one
branch is utilized in the deformation solution, it will generally be possible to show
that the same branch can apply throughout the loading process of the corresponding
incremental theory. (This is illustrated in the following example.)

The following example will emphasize that the mixed boundary conditions must
be prescribed in certain patterns if a solution is to exist. If, in the example, any stress-
type condition were to be replaced by a displacement condition the displacement problem
would be overprescribed.

4. Indentation of a slab. Fig. 4 shows a rectangular section slab, resting upon a
rigid frictionless surface, being indented from above. The characteristic coordinates
(£, v) are oriented at 45° with the tacit assumption that the particular boundary con-
ditions imposed will make it possible to utilize only one branch of the loading surface.
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V,

Fig. 4. Rectangular slab showing characteristics through a point (S, H), coordinate systems and dis-
placement definitions.

We first subtract off a uniform negative shear y(n = — 5 of undetermined magnitude
(to be added later) which corresponds to a uniform contraction in the z direction and
equal elongation in the w direction. With oc a line of symmetry, the boundary conditions
on three sides take the form:

on oc:

u„(0,2) = 0, (13)

r„.(0, z) = 0; (14)

on cd:

t'Aw, —L) = 0, (15)

rwJw, —L) = 0; (16)
on ad:

<rw(-L,z)= 0, (17)

z) = 0. (18)

On side oa we choose the displacement conditions

v,(w, 0) = —.4

uw(w, 0) = —B

cos\~) +

-cos + 1

C, (19)

- D, (20)
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with constants A and B positive, as being representative of displacements which might
be caused by an indenter.

Eqs. (19) and (20) are Cauchy conditions for region 1. Eqs. (3) and (4) determine
the functions /i(77), <7i(£). Continuity of displacement v across ob and Eq. (13) constitute
a type-three problem in region 2. Note that g2(0 = <7i(£)- Continuity of u across be
and Eq. (15) determine the displacement field in region 3 with /3(??) = /2(??). Finally,
continuity of u across ab and of v across bd represents a Riemann problem in region 4
with /4(tj) = /,(??) and g4(g) = g3(0-

We note that continuity of tangential displacement across ob requires that D = 0;
displacement continuity across be requires that C = 2B. This illustrates our previous
remark that prescribing continuous boundary displacements is not sufficient to insure
a continuous field.

The resulting shear strain field is

7f, L

in regions 1 and 4, and

7{, = | (A + B)

{A - B) sin ~ (A + B) sin {~^j (21)

(22)

in regions 2 and 3. Note that y£v is continuous but the derivatives are not continuous
on od and ac.

Eqs. (21) and (22) do not as yet represent a unique strain field. The uniqueness
proof assumes isotropic hardening. The solution assumes that the stress vector lies on
a single branch of the loading surface. For these two assumptions to be consistent in
this example the stress field must satisfy the consistency conditions:

rt, < 0, (23)

]2r£,/(«r£ - <r,)| > 1. (24)

Condition (23) is clearly satisfied by Eqs. (21) and (22) if B > A >0. Condition (24)
is not satisfied a priori; the stress field must first be determined. If, for a particular
choice of constants A and B and a particular stress-strain equation, condition (24)
were not satisfied everywhere it must be concluded that the same branch does not
hold everywhere. This presents a difficult problem which will not be examined here.

We consider the stress field for the case A = B and make the substitutions ij' = £/L,
= V/L, e = 2-kGA/YL, r' = r/F, 7' = Gy/Y. The strain field becomes

= — e ]sin ( V^ttS') I — 8' (25)
in regions 1 and 4, and

7f= e[sin (Vi^y) - |sin ("\/2x£')|] — 8' (26)

in regions 2 and 3, where 5' = G8/Y is the uniform shear strain (previously subtracted)
which has been added to the solution.

Regardless of the particular stress-strain equation chosen, the method of determining
the stress is the same in principle. The stress state on ad is known. This provides the
initial conditions for the integration of Eq. (8) along rj = (const) lines and of Eq. (9)
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along £ = (const) lines intersecting ad. This determines <r{. in regions 1 and 4 and ay
in regions 3 and 4. With the stress state on cd now known, integration of Eq. (8) provides
£r{. in regions 2 and 3. Finally, integration of Eq. (9) with the initial conditions now
known on oc determines oy in regions 1 and 2. It remains only to see if the stress field
satisfies the consistency relation (24). If so, the solution is unique. This relation will
always be satisfied provided the constant strain 5' is chosen to be large enough.

For linear behavior, r = Cry or r' = y', the integration may be rendered in closed
form. The results are:

= -e sin (VW) ~ 8' (27)

in regions 1 and 4,

= e[— VMv' ~ £' - V2) cos — sin (V2ir?)} ~ 8' (28)
in regions 3 and 4,

o-j. = e[*\/27r(—£' — 3i/' — \/2) cos (\Z2ttt]') + sin (V^xt;')] — 5' (29)

in regions 2 and 3, and

<r\. = e[V2ir(-3? - y' - V2) cos (V^') + sin (V2x£')] - 5' (30)
in regions 1 and 2. Lines od and ac are discontinuity lines of the interior normal stress.

Investigation of the consistency relation (24) discloses that it is not satisfied for all
values of 5'. The limitation is that 8' > re or 5 > 2irz A/L.

For purposes of illustrating the application of a nonlinear stress-strain relation,
the numerical solution corresponding to Prager's law, Eq. (7), was undertaken. Fig. 5
illustrates the results. For all cases we chose 8' = ire for comparison with the linear case.

For small values of the indentation parameter, e < 0.01, the nonlinear stress-strain
equation is linear to three places. As a check, the case e = 0.01 was solved numerically
and agreed with the previous linear solution to two places. The results for increasing

-10

Fig. 5. Dimensionless surface tractions ov/e> t'wz'/e = o-»-/e at indented surface. Linear behavior
applies for e < 0.01. Uniform stress field c2 = —2.0Y applies for e > 1.0.
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values of the indentation parameter e clearly show that the stress field approaches the
uniform limit stress az = — 2Y, <rw = r„, = 0. For e = 1.0 this limiting state is reached
to within two significant figures. (Since e = 2-irGA/YL, using properties of mild steel,
e ~ 7500 A/L. Consequently, the condition e = 1.0 would easily satisfy the small
strain assumption.)

In all examples the consistency relation (24) achieved its minimum value at the point
(0, 0) in region 1, Fig. 4. These values were 1.0, 1.1, 8.5, 31.6, 124, corresponding, respec-
tively, to e = 0.01, 0.1, 0.55, 0.775, 1.0. The same branch is clearly applicable throughout
the loading process.

Acknowledgement. The author is indebted to A. Iacoletti for assistance in obtaining
the numerical results.

References

1. W. Prager and P. G. Hodge, Theory of perfectly plastic solids, Wiley, New York, 1951
2. E. T. Onat and W. Prager, The necking of a tension specimen in plane plastic flow, J. of Applied Physics

25 (1954)
3. S. B. Batdorf and B. Budiansky, Polyaxial stress-strain relations of strain-hardening metal, J. of Applied

Mech. 21 (1954)
4. R. Hill, On the problem of uniqueness in the theory of a rigid-plastic solid. I, J. of the Mech. and Physics

of Solids 4 (1956)
5. R. Hill, Discontinuity relations in mechanics of solids, Progress in Solid Mechanics, Vol. II, North-

Holland, Amsterdam, 1961
6. A. S. Balchan and H. G. Drichamer, High pressure electrical resistance cell and calibration points above

100 kilobars, Rev. Sci. Instruments 32 (1961)
7. E. M. Shoemaker, A Theory of linear plasticity for plane strain, Arch, for Rational Mech. and Anal.

14 (1963)


