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NECESSARY CONDITIONS FOR SUBHARMONIC AND SUPERHARMONIC
SYNCHRONIZATION IN WEAKLY NONLINEAR SYSTEMS*

BY
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1. Introduction. The problem under consideration in this paper is that of a resonant
system excited at an angular frequency, w, not close to resonance. The system possesses
weak nonlinearities which permit energy exchange between a response at the excitation
frequency and a response close to resonance frequency. Under appropriate conditions
these two responses can synchronize in a stable manner. Asymptotically then, the total
response consists of one principal component at frequency w and another at frequency
nw/m, where n and m are positive integers. If m/n < 1 the resonance frequency is
above the exciting frequency and the response is termed “‘superharmonic”. For m/n > 1
the response is “subharmonic”.

In a note [1] published in this journal, Lundquist investigated the occurrence of
subharmonic oscillations in a passive nonlinear system with weak forcing. The analysis
was restricted to the first order of approximation, that is, the response of the system
at its resonance frequency was taken to be of order unity in magnitude and the conditions
for the existence and stability of the oscillation were found by consideration of terms
of order e (where ¢ measures both the strength of the nonlinearity and the strength of
the forcing function). Unfortunately, some of the terms considered were actually, in
a subtle way, of higher order than e. Had this been recognized the analysis would
(correctly) have yielded only the null solutions. As it was, inclusion of the higher order
terms gave (erroneously) subharmonic synchronization of a wide variety of orders
independent of the kind of nonlinear function.

In the present paper we shall show that there is an intimate connection between
the nonlinear function and the orders of subharmonics or superharmonies which may
be synchronized. A procedure will be set for determining whether a certain nonlinearity
might sustain a particular order of subharmonic or superharmonic and the special case
of polynomial nonlinearity will be investigated in detail.

2. The Lundquist Problem. The differential equation considered by Lundquist,
with a slight change in notation, is

2,
‘fi—tya+y = e[Fsin (@t + ») —B%—f(y)], @)
with f(y) = —f(—y); B8, F > 0; e < 1.
He assumed the solution of (1) to be of the form

y = Rsin ¢t + en(f) )]

where R = O(1) is the amplitude of the subharmonic. It is expected that periodic solutions
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of this type will be found with a period 27 4+ 7, where 7, = O(e). This period must
in turn be a multiple m/n(m, n are integers) of 2r/w, and the order of the subharmonic
solution, y, is n/m in conventional parlance. It follows then that w — m/n = 10/27
or w — m/n = w O(e). The relative phase between excitation and response for the
equilibrium solution is established through ».

A solution starting with initial conditions y(0) = 0, dy/di{(0) = R will return to
y = 0 with positive slope after the period 2= 4+ 7, . The discrepancies in the slope and
relative phase at this point were determined following the procedure of Cartwright and
Littlewood [2]. By imposing the conditions of periodicity for the solution, the amplitude
R and phase v were found to satisfy the equations:

sin wrr sin (wr + v) = ;% + 0() 3)
/

sin wr cos (or +9) = 5= [ " {(R sin &) sin ¢ dt — © R L o@) ()
0

eF
R — 1)
el

R’ — 1)

In deriving these equations it was assumed that a full number of force cycles are found
in the period 27 + 7, . This restricts n to be unity. The expressions (3) and (4) were
then simplified to yield the amplitude-frequency characteristics of the subharmonics.
According to this analysis, the order n/m of the subharmonic does not depend on the
form of the nonlinearity. In fact, a more careful examination of the expressions (3)
and (4) indicates that their left-hand sides are of O(¢®) or higher in magnitude. There
are two separate cases to be considered. First, the case of w = O(1) (i.e., low order
subharmonics): since w — m/n = wO(e) then sin wr =~ O(e) and the left-hand sides
of (3) and (4) are of order of €. On the other hand, if « is of order 1/¢ in magnitude
(i.e., higher order subharmonics are being examined) then sin wr ~ O(1) and
the coefficient ¢F/w(w® — 1) = O(¢), so again the left-hand sides of (3) and (4) may
be neglected in comparison with terms of order ¢ in magnitude. In either case, the
amplitude of the subharmonic is zero to the first order approximation and a higher
order of approximation has to be carried out in order to detect it. This will be discussed
in more detail in the following section.

The conclusions of Lundquist were checked by Hansson and Goransson [3] in an
experiment with an electric circuit containing an iron core near saturation. Some of
their observations were that the amplitude of the subharmonic was almost independent of
the driving voltage and that the subharmonic appeared spontaneously in certain cases.
These pecularities lead one to believe that the experiment was not a valid representation
of the system discussed by Lundquist.

3. Formulation of the Problem and Method of Solution. Consider the system
which is described by the differential equation

d2

Et% + ef<x, %xt-) + wez = F cos wt, ®)

where ¢f represents the nonlinearities and possibly a small linear component as well.
Physically, it is more interesting to consider strong subharmonic and superharmonic
oscillations instead of weak ones (of order e and higher in magnitude). For this reason,
we shall focus our attention on the existence of synchronized oscillations of order unity
in magnitude and consider strong forcing in (5). Next, anticipating a result to follow,
we will permit the dissipation and the detuning to be of order e.
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Clearly, one part of the forced response of this system which is correct to order
unity in magnitude is S cos wt where S = F/(«’ — wZ2). This suggests the substitution:

z =y — S cos wl. 6

= (G - i)/« @

Defining

(5) becomes:
d,+ 2wy— —e[f(y— Scosm,dt +Swsma»t)-—*yyi|- (8)

The solution of (8) may be approximated by a variety of techniques such as those by
Poincaré [4], Van der Pol [5], Krylov-Bogoliubov—Mitropolski [6], [7] and Cole and
Kevorkian [8]. We shall use the latter’s technique and will represent the solution of (8)
by an asymptotic expansion involving two time variables:

y(t, 7, ¢ = yo(t, 7 + eni(t, 7) + e2y2(t, I N (9)

where 7 = ¢ is the “slow” time, and the variable ¢ and 7 are treated as independent.
In order to obtain uniformly valid second-, third-, and higher-order approximations
of the solution, it becomes necessary to consider the additional terms in an expansion
of the slow time scale

T=1te+ €4+ A+ - -0)

and further to expand the square of the natural frequency:

wy = wo(l + eB, + €B, + ---).

The coefficients A; and B; are chosen appropriately so as to assure the boundedness
of the solutions in the slow time variable. This will not be done here since we are only
interested in the first order approximation to the solution. By substituting (9) into (8)
and collecting terms of like order in ¢, we obtain the equations:

0 } Yo n’
¢ terms: —3 mzw Yo = 0, (10
a 2
e terms: ag,‘ mzw gy = —]‘(yo — S cos wi, W 4 Sw sin wt) + vyo — 2 5% (11)
The solution of (10) is of the form
Yo(t, 7) = R(r) cos [% wt + so(r)] ) (12)

where R and ¢ represent the amplitude and phase of the subharmonic n/m < 1 or
superharmonic n/m > 1. The solution (12) is then substituted into the right-hand
side of (11) and the secular terms are suppressed by:
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o IR _ [f(yo — S cos wt, %1;—" + Swsin wt)] , (13)

sin((n/m)wt+o) termat

cos((n/m)wt+p) termst

2 —wR [f(y(, — 8 cos wt, 37 + Sw sin wt)] — YR. (14)

A phase plane analysis may now be used to determine the behavior of R and o.
Elimination of the slow time, 7, from (13) and (14) gives:

dR U]sin((ﬂ/m)wl+¢) terms
= ) 15
R d¢ [f]cos((n/m)wt+w) terms ’YR ( )

which will yield integral curves in the R — ¢ phase. In general, (15) cannot be integrated
in a closed form*; however, much may be learned from a study of the singular points
of (15). These points are located at the common roots of the algebraic equations:

[ﬂsin[(n/m)wl+¢] terms — Oy (16)
[ﬂcos[(n/m)wt+wl terms ‘YR° (17)

The singular points represent all possible equilibrium values of the amplitude and
phase and therefore include all synchronized solutions.

4. Some Necessary Conditions for Synchronizations. In a linear system there is
no interaction between the response at the natural frequency y, and the forced response
S cos wt. Nonlinearities give interactions which may be classified as synchronous or
asynchronous depending on whether they involve the relative phase of the two response
components or not. Of special interest are those interactions which are themselves at
the frequency of one or the other response components, and in particular at the natural
frequency. Since the nonlinearity is assumed to be of order e in the present analysis,
the principal interaction components are of order ¢ and can be found by substituting
the solution y, — S cos wt into the nonlinear function. For a particular polynomial
nonlinearity, these principal components will generally be limited in number and there
may or may not be a synchronous component at the natural frequency. If no such
component of magnitude e exists then it will be impossible to sustain a synchronized
subharmonic or superharmonic under conditions requiring an interaction of this strength
(e.g., dissipation in the system of order ¢, or detuning of a self-excited oscillator by a
frequency shift of order ¢). For the purposes of the present work we are interested in
systems where such a requirement applies, and can therefore state that the existence
of a principal interaction component at the resonance frequency, which is synchronous,
is necessary for subharmonic or superharmonic synchronization.

{The notation

sin (1 wt + ga)
. e [EEmme m
I implics f ifl d,

sin

cos{((n/m)ul+‘o)} terms COS (%l wl + ¢>

i.e., the coefficients of the sin [(n/m)wt + ¢] or cos [(n/m)wt + ¢] terms of the Fourier expansion of the

function f.
*Expression (15) can be integrated in the case of a conservative nonlinearity and this can be found

in [9].
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In terms of the formulation of the previous section, this condition may be interpreted
as follows. If we denote that part of f which is nonlinear by f’, then the interaction
components at the natural frequency are

[f,(y — S cos wt)]{!ih[(ﬂ/m)w1+¢]

cos[(n/m)wt+elf terms

and in order for these to be synchronous there must be an explicit dependence on the
relative phase, ¢. If there is no synchronous interaction (13) and (14) will have no
singular points since each right-hand side will be independent of ¢.

The action of the nonlinearity on either y or S cos wt generates harmonics of each
component of magnitude e. These harmonics along with the principal interaction com-
ponents produce further interaction components of order €¢* or higher. These new com-
ponents widen the frequency range of the interaction and may produce subharmonic
or superharmonic synchronization at a higher order of e. Pursuing this course of investi-
gation, Gambill and Hale [10] showed that if the nonlinearity was cubic, subharmonies
of order m/n = 2k + 1 might be synchronized provided the system dissipation was
of order €. Their investigation is complimentary to the present one. It is not difficult
to see how the two could be combined to give a general necessary existence criterion
for any type of polynomial nonlinearity combined with any order of system dissipation
but such an extension is beyond the scope of this study.

5. Relationship between Order of a Polynomial Nonlinearity and Frequency Range
of Synchronized Oscillations. Consider a nonlinearity of the general polynomial
form f = z"(dz/dt)’. The sin [(n/m)wt 4+ ¢] and cos [(n/m)wt + ¢] contributions of §
may be represented by the integrals:

sin (7}_ wt + <p>
’ 2mx/nw 8
IR, 8, «»){ - [ x(%) m dt, (18)
’ o :
IR, S, ¢ cos (& ol + ¢)
m
where
z = R cos (%wt + tp) — S cos wt,
(19)
-Zi; = —:L—ansin%wt + ¢ + Swsin wt.
Since it is cumbersome to evaluate (18) directly, we consider the generating function:
sin (1 wt + go)
I , 2mr/nw d P
12(771 Rr S: QO) °

cos (?n- wt + go)
where p = 7 + s; and then

’ _ (p_s)!d’11'2
1,2(Ry S» ‘p) - p! dnt (Ov R, S; <P)~ (21)

By the use of (19) and trigonometric identities, the expression (20) may be simplified
to give:
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2mx /nw P
Lin, B, 3, ¢){ = f [c Cos (% wt 4+ ¢ + s“,./m> — d cos (wt + s‘:)]
I.(n,R, 8, ¢ °

sin (% wt + ga)
. dt, 22)
cos (%L' wt + ¢

where

2 1/2
n -
R<1 + 7 sz) ; Com = tan™' 9 — w;

[

d = S + 7o) & = tan™' qw.

The contributions at the resonance frequency for the nonlinearity z"(dz/dt)’ are now
found according to the operations in (21). From the discussion in the previous section,
I’ or I} must exhibit an explicit dependence on ¢ for synchronization to occur. This
is equivalent to requiring an explicit dependence of I, or I; on ¢.

Consider I and I} for the special nonlinear function f' = z”:

II(R S ) 2mr/n% n Sin (& wt + ¢)
14y, ,‘P}=f [Rcos(;)—lwt—l-go)—Scosm:I mn
3R, S, ¢ °

dt (23)
cos (% wt + ¢

Comparing this with (22), we note that except for the substitution of ¢ and d for R
and S for a redefinition of the relative phase to ¢ + {,./» — {: the two functional forms
are identical. Thus, if I] or I} in (23) exhibit dependence on ¢, I, or I, in (22) will do
so also. This is to say that the test for possible existence of synchronized solutions
can be performed with z” in place of z"(dx/dt)’.

Expanding z® in a binomial series, we obtain:

m ’__ - (_l)kp' p— p—k kM
I:Rcoso—Scos;(o—-ga)] = Igmfg *S* cos” "9 cos ;(0—@, (24)

where 8 = (n/m)wt + ¢. Since what really matters is the range of the 6 frequencies
in the summation and not the values of the coefficients, only the arguments of the
trigonometric terms need be retained. In the case of odd p, the following arguments

are produced:
for k odd:

[(p -k —-29) + ;—n *k — 2i):|0 F %1<p(k - 21), (25)
where

1<k<p 0<j<P3F, oci<hl

and for k even:

[(p —k-2) £ 0= 2]")]0 F ool — 20), (26)
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where

2Sksp_1’ 0<j/<______ OSi'SIL%_I‘

The nonlinearity will contribute cos 6 and sin 6 terms if:

m . . m .
(p—k—2j):|:;(lc—2z)=:i:1; (p——k—2z’)ig(k—2]’)=:|:1. @7
Since (p — k — 2j) min = 0, (k — 2¢) min = 1; (p — k — 2¢) min = 1, (k — 2§)
min = 2 then for m/n # 1, the positive sign on the left-hand sides of (27) may be dropped.

Similarly, the positive sign on the right-hand sides of (27) may be excluded since the
range of variation of j includes the effect of the positive sign. Therefore,

_n_t=p+1—k’—2v'

where
K =k—2=1,2,3,---,p
7% for k' odd
v=20,1,2,3, --- .
p—k —1

’
) for k’ even

The same procedure in the case of an even order nonlinearity yields:

-k =2
-ptl 7 Y . p = even, (29)

m
n

where
k’ = l’2t3’ LR /)

3

4
il FOR EVEN p: READ ALL CIRCLES ON LINES=p
FOR ODD p: READALL DOTS ON LINES=p

10 11

Fre. 1. Orders of Sub- and Super-Harmonics m/n for a Nonlinearity of Total Order p.
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p_—/;_—_l_ for %’ odd
v =0,1,2,3, ---
— I’
[ 5 k for k’ even

A plot of m versus n for various values of p is given in Figure 1. It is interesting to
observe the symmetry between the subharmonics and superharmonics that can be
sustained with a polynomial nonlinearity of a given power. The order of the subharmonic
is merely an inversion of the order of the superharmonic. This may be interpreted to
indicate that the interaction of y and S cos wt which produces a synchronous component
at the y-frequency will also produce one at the S-frequency (w). In fact, for 2” which
is a conservative function an equal and opposite energy exchange must exist. Even
for a nonconservative function (z”~! dx/dt, for example), a reciprocal exchange exists.
This is treated in detail in [9]. It is further observed from Figure 1 that the order of
the synchronized oscillations may be fractional (e.g., m/n = %, % for p = 4). Finally,
odd orders exist only when p is odd, while even orders exist when p is odd or even.
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