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NOTE ON THE GENERAL SOLUTION OF THE HEAT EQUATION*

By NURETTiN Y. OLQER** (Illinois Institute of Technology, Chicago, Illinois)

In a recent issue of this journal Winer [1] presented a solution to the heat equation

v2)r(r't] = ~k~' r'mR> 1 >0 (1)

in a stationary, homogeneous, isotropic, finite region R with constant thermal properties.
In equation (1) K > 0 denotes thermal conductivity; k > 0, thermal diffusivity; Q(r, t),
a prescribed volume heat source per unit time and per unit volume; r, position of a
point in R; T(r, t), unsteady temperature field in R) t, time; and V3 the Laplacian.
Winer's solution is based on the assumptions that Q(r, t) is separable in r and t, that
the initial temperature field is uniform throughout R, and that the boundaries of R
are maintained at this constant initial temperature. Moreover, except when the separable
source Q is a Dirac delta function in t, the solution given in [1] is not very suitable for
numerical computations since the result of evaluation of the time integral appearing
in Eq. (2) of [1] is to introduce slowly converging series expressions.

The purpose of this note is to summarize the general solutions of Eq. (1) not sub-
jected to these restrictions and limitations. To this end, the following general boundary-
and initial-conditions are specified for Eq. (1):

Ui(r)T(r, t) = [.4,(r)n,--V + 2?,(r)]T(r, t) = /,(r, t), ronS,-, t>0 (2)
T(r, t) = F{r), r in R and on S( , t = 0 (3)

wherei = 1, 2, • • ■ , q) q is the number of co-ordinate surfaces, St, bounding R; A <(r) > 0,
Bi(r) > 0, /,(r, t) are prescribed functions defined on $,■ ; F{r) is the prescribed initial
temperature field; n, is the outward unit normal on S{ ; and V is the gradient vector
in r-space.

With Bi{r) 5^ 0 for all i = 1, 2, •••,?, simultaneously, the solution to the system
of Eqs. (1), (2) and (3) is [2]

(4a)

T(x, t) = £ Toi(r, t) + E Cm0m(r) exp [ 4>Jt)F(t) dV
j =0 m = 1 R

- E f 0m(r)roi(r, 0) dV + [' exp (X» f 0„(r) dT°f' r) dV dr
-J R Jo Jr uti —0

where

(V2 + r) = 0, r in R, (5a)

Ui(T)4>m(r) = 0, r on Si , (5b)

i = [ 4>*(r) dV (5c)
^ m J R

^Received June 10, 1965; revised manuscript received March 21, 1966.
**Formerly of Ordnance Engineering Associates, Inc., Des Plaines, Illinois.
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and the pseudo-steady temperature distributions of order zero, Toj(r, t), are the solutions
to the system

VX(r, + Y Q(?' l) = °- r in R (6a)

(6b)

.(i = 1,2, , q; j = 0, 1, ••• , q)

Ui(r)T0i(r, t) = Sit- fi(r, t), r on S

and have the eigenfunction expansion

Todr. t) = ̂  L fjj *.(r) fB ̂(r)Q(r, <) dF + 5,,- K fg U*, 0 AS/
(t = 1, 2, • • • , g; j = 0, 1, • • • , g) (6c)

50j- and 5,,- denoting Kronecker delta.
The solution (4a) can be expressed in the equivalent form of

T(r, 0 = Z 2«(r, 0 + X Cm<f>m(x) exp (-X*k/){ f «-(r)F(r) dF
7=0 w = l W/2

- Ms L o,dr+tL it «r'o)
- c jf owft L *-(r) ^dr + £ L z§ dS■]4 (4b)

An alternate expression for T(x, t) follows from (4b) as

T(r, t) = Z) r) exp (-X^M f 4>m(x)F(x) dV
m = 1 \J R

+ | jo' exp (Am2Kr) £ <^(r)Q(r, r) dV + K t Jg W, r) dS, dr}- (4c)

The expression (4c), although simpler in form than the expression (4b), is not uniformly
convergent except when /,(r, <) = 0 for all i. On the other hand, under the conditions
cited in [2], the expressions (4a) and (4b) converge uniformly and are well suited for
engineering purposes in view of their more rapid convergence. Implicit in (4a) and
(4b) is the assumption of the existence of first order derivatives of the source functions,
/<(r, t), Q(r, t), with respect to t. Letting /4(r, t) = F(r) = 0 in the expression (4c), and
taking Q(r, t) as being separable in r and t, equation (4c) reduces to the result (2) given
in [1],

The particular case where

Ui(i)T(i, t) = A'(n, - V)T(r, t) = /,(r, t), r on S{ , t > 0 (7)
for all i = 1,2, •••,<?, simultaneously, deserves special attention. The general solution
to the system of (1), (7) and (3) can be shown to be [3]

T(r, t) = i [ F(i) dV + E [Q,-(0 + T0i(x, /)]
v Jr j-o

F(r) - E Toi(r, 0)+ Z Cm4>m(r) exp (-X^kM f 0™(r)
m = l W«

- E f exp (X» [ 4>m(f) aT"fr' r) dF dr} (8a)
j = 0 Jo J# Cr j
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where V is the volume of the finite region R; <f>m(r) and \m are, respectively, the eigen-
functions and the positive eigenvalues of the system of (5a) and (5b), where E/,(r) is
now defined in (7); and

°'w = itv Soi [ [ Q(r, t) dV dr + Sij [ f /,(r, r) dr
Jo Jr Jo JSi

(i = 1,2, ••• , g; 7 = 0,1, * - • , g). (9)

The pseudo-steady temperature distributions of order zero, T0,(r, £), are now to be
determined from the system of

VX-(r, t) + Q(r, 0 = i , r in 72

/v'fn, • Vj7'0,(r, /) = 5,,- /,(r, 0, r on S{

[ T0l(r, t) dV = 0
J R

(10a)

= 1'2' ' q; (10b)
] = 0, 1, • • • , q)

(10c)

where t plays the role of a parameter, and the eigenfunction representation for Toi{x, t) is

T„,(r, t) = ~ Z|i(r) S0I. [ <f>m(r)Q(r, I) dV + 5,,. [ ^(r)/,(r, t) dS<
m = 1 Ar« L ^5,"

(* = 1,2,---, g; j = 0, 1, ••• , g). (11)
Whenever the T0i(r, i) functions can be determined directly from the system (10),
the expression (11) constitutes a set of summation formulae.

By use of (9) and (11) the solution (8a) can be expressed in the equivalent form of

T{r, 0 = W) dV + fQ [ fR Q(r, r) dV + Z £ /,(r, r) dS,-

+ Z Toi(r, t) + Z Cm0».(r) exp ( —[ 4>m(r)F(i) dV
7=0 m=l W-ft

f *„(r)Q(r, 0) dV + Z [ 4>m(r)/,(r, 0) dS4

C?7

1
#xi

- f f Mr) dr+if *„(r)J0 Arn dr i = i •'Si dr

where the source functions /, (r, t) and Q(r, <) appear explicitly.
A further alternate expression for T(r, 2) follows from (8b) and (11) as

T(r, 0 = jfg F(r) c?F + ^ £ [£ Q(r, r) dF + Z £ /4(r, r)

+ Z C,„0,„(r) exp (-X^OI [ ^(r)F(r) dV
m = 1 WJ2

dr f (8b)

dr

+ ~Z f exp (\*kt) [ 4>m(i)Q(i, t) dV + Z f <t>n.(r)1i(r, r) dS<
-ft-Jo * = i J Si

(8c)
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in which the pseudo-steady solutions T„, (r, t) do not appear. Again, the convergence
of (8a) and (8b) is much faster than that of (8c) which does not converge uniformly
unless /,(r, t) = 0.
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