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— NOTES —

SLIGHTLY DAMPED LIBRATIONS*

By J. A. MORRISON (Bell Telephone Laboratories, Inc., Murray Hill, New Jersey)

Abstract. The application of a generalized method of averaging to the problem of
slightly damped librations in a perturbed one degree of freedom system is considered.
The librations are those arising in the critical case in which the rate of change of the
phase in the unperturbed system has a zero. The perturbed system is reduced to a form
suitable for the application of the generalized method of averaging, and the first order
averaged equation is derived for the slow rate of change of the amplitude of the libra-
tions, due to the damping.

1. Introduction. Consider the system of two first order differential equations

jj; = e/0, V, (); ^ = a(x) + tg(z, <p; e), (1.1)

where t > 0 is a small parameter and

f(x,V;e) = jw{x,<p) + ef2\x, <p) + ••• ; (12)

g(x, <p; t) = gm(x, <p) + tgm(x, <p) + • • • •

If u(x) ^ 0 and / and g are periodic in <p, then the method of averaging in the case of a
rapidly rotating phase [1] may be applied to obtain an asymptotic solution to the system
(1.1). We wish to consider the critical case in which «(c) = 0, but u'(c) 5^ 0. It is further
supposed that /a)(c, 7) = 0 and

0 < X < —o)'(c)/(I)(c, V)/Qp - 7) < A, (1.3)

for — < {ip — 7) < 1p*, say, so that we have the case of a libration, as will be evident
later. Note that we do not have to assume that / and g are periodic in <p. The case in
which (1.1) is a Hamiltonian system, and hence undamped, has-been dealt with by
Gormally [2]. Here we consider librations which, in general, are damped.

For € > 0 there is a stationary point

(1.4)
* = ?(c, 7; 0 = c + et\c, 7) + *¥2>(c, 7) + • • ■ ,

<P = pic, 7; e) = 7 + epa'(c> 7) + e2p<2'(c> 7) + * * T.

of the system (1.1), satisfying

/($> p;«) = 0; w(£) + eg(£, p; e) = 0. (1.5)

Substituting (1.4) into (1.5), and expanding in powers of e using (1.2), we find, in par-
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ticular, that
co'ma) + 9m(c, 7) = 0, (1.6)

f<1> ^7(c'y) + pa> ̂ 7(c-7) + r(c'7) = °- (L7)

These equations determine £a) and p(U since co'(c) ^ 0 and (d/a)/d<£>)(c, 7) 0, and
the higher order terms in (1.4) may be determined by iteration.

Let p. = eI/2 and make the transformations

x = K(c, 7; M2) + P-V]) V = [p(c, 7; M2) + $]'> T = (1-8)

Then the system (1.1) takes the form

^ = h(\f) + nF(y, i) p.); ^7 = o}'(c)y + fiG(y, 4) p), (1.9)

where

K*) = f"(F,y+ f), (1.10)
F(y, i) fi) = {/K(c, 7; ti) + vy, pic, 7; m2) + "A; m2] — /"'(c, 7 + >A)}/m, (1-11)

and

<?(?/> 'A; m) = 7; p2) + py, p(c, 7; m2) + 4] m2]

+ {w[£(c, 7; M2) + M2/] - pu'(c)y\/p. (1.12)
Hence

F(y, V; p) = F(1)fo, *) + ^(2)(2/, *) + • • • ; (1 13)
G(y, *;n) = Gm(y, *) + pGm(y, 4) + • • • ,

where Fu){y, \p) and G(n(y, \(/) are polynomials in y, and

F(i,(0, 0) = 0; G(!)(0, 0) = 0; h(0) = 0. (1.14)

In particular, we have

F"\y,i) = y^(c, 7+^), (1.15)

and
Gw{y, 4) = ^«"(c) + pa>(C>7+ *) - ?a)(c,7) (1.16)

using (1.6). We proceed to reduce the system (1.9) to a form suitable for the application
of a generalized method of averaging.

2. Reduction in the odd case. In a previous paper [3] we discussed a generalized
method of averaging, which could be applied directly to a perturbed vector system of
differential equations of the form

~ = pZ?\z, 0) + pZ?\z, 6) + • • • ;dt (2.1)

^7 = Q(0)(z, 6) + pSlw(z, 0) + n2ti2\z, 9) + • • • ,



1967] NOTES 367

where Z'n(z, 6) and S2a>(z, 0) are periodic in 0, with fixed period, and f2<0)(z, 6) ^ 0
in the range of interest. Although this system may be reduced to a form appropriate
for the application of the method of averaging in the case of a rapidly rotating phase,
the transformation required is not, in general, explicit. On the other hand, our gen-
eralized method of averaging applied directly to the system (2.1) is an explicit procedure.
We note here the first order averaged equations corresponding to the slowly varying
quantities , namely

fly

~f = mT,(i)( z), (2.2)

where

(l/fi(0,(z, 0)>T.a>(z) = (Z?\z, 0)/fl(o,(z, 0)), (2.3)

and the brackets denote averages over a period of 0, wherein z is held constant. We
refer the reader to [3] for the development of the higher order approximations, and to
[4] and [5] for two excellent review articles on averaging methods. We will now reduce
the system (1.9) to a system of the form (2.1), with z a scalar.

We first consider the case h{—\p) = where h(\p) is as given in (1.10), and let

m = — 2a>'(c) [" h(i) d*. (2.4)
J 0

Note, from (1.3) and (1.10), that <1>(/3) is a monotonic increasing function of /3 in the
range 0 < (3 < \f/* and, in the present case, $( — 18) = $(/3). In a manner similar to that
adopted in [3], where we discussed slightly damped nonlinear oscillations, we make the
transformations

= a sin 6; u'(c)y = cos 0{[$(c*) — $(asin 0)] sec2 8}1/2, (2.5)

where a > 0 and the positive square root is to be taken. The quantity a may be regarded
as the amplitude of the phase libration. It is a straightforward matter to verify that
the system (1.9) transforms into

h(a) = fi[h(\p)G — cos 0{[$(a) — $(a sin 0)] sec2 0}1/2F], (2.6)
CIT

ay = {[$(<*) — $(a sin 0)] sec2 0}1/2
ar

1+nsm
h(a)

+ tiG sec 0[1 — sin 0/i(asin 6)/h(a)]. (2.7)

Note that the factor of G in (2.7) remains finite as cos 6 —> 0. In the case of damped
librations a —> 0, and it is noted, from (1.14) and (2.4), that dd/dr remains finite for
a —> 0. From (1.13) and (2.5) it is seen that (2.6) and (2.7) are in a form suitable for
the application of the generalized method of averaging.

From (1.13), (2.1)-(2.3) and (2.5)-(2.7), the first order averaged equation for a is

h(a) ^ fj {[$(«) - $(a sin 6)] sec2 0}"1/2 d6 = MP(a)

s fi [ [A(asin 6)Gn) {[^(a) — $(asin 0)] sec2 0}_1/2 — F(1) cos 0] dd. (2.8)
^0
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Substituting from (1.15), (1.16) and (2.5), it is found that
/%2 r

P(a) = / /i(asin 6)g(1)(c,y + a sin 0) {[$(«) — 3>(a sin 6)] sec2 9}~1/2 dd
J 0

i r2r
 ttt / cos2 0 —— (c, 7 + a sin 0) {[$(«) — $(a sin 0)] sec2 0|I/2 d6, (2.9)

CO 4/ o

the terms involving w"(c) and ga)(c, y) vanishing identically, since/i(a sin 0) and$(a sin 0)
are, respectively, odd and even in 0. But, from (2.4),

-yr [cos 0{[$(a) — $(a sin 0)] sec2 0j1/2]
UU

= au'(c)h(a sin 0) {[$(«) — $(a sin 0)] sec2 0)~1/2. (2.10)

Hence, integrating by parts,
/»2 ir

/ h(a sin 6)gw(c,y + a sin 0) {[$(«) — $(a sin 0)] sec2 0}~I/2c?0
J 0

= —77^- [ cos2 0 ^— (c, 7 + a sin 0) {[<£(«) — $(a sin 0)] sec2 0}1/2 dd. (2.11)
cc (c) Jo dtp

From (2.8), (2.9) and (2.11), noting that the integrands are even about 0 = r/2, we
obtain finally

h(a) ^ [ {[$(«) — 4>(a sin 0)] sec2 0}~1/2 dd   rrx [ — (c, 7 + a sin 0)
UT J-r/2 CO (C) J-r/2 L ox

(c, 7 + a sin 0) {[$(«) — $(a sin 0)] sec2 0}1/2 cos2 0 dd. (2.12)

We comment on the special case in which the system (1.1) is a Hamiltonian one.
Then, in particular, using (1.2),

nzrCD

"> - »'"<*■ "> - ^fr <2-13>
Hence, from (2.12), the first order averaged equation for the amplitude a gives da/dr = 0,
as is to be expected. In the next section we obtain the result analogous to (2.12), in
the case that h(\p) is not an odd function of ip.

3. Reduction in the general case. In the general case, when h($) is not an odd
function of \[/, the reduction of the system (1.9) to a form suitable for the application
of the generalized method of averaging is not completely explicit. Nevertheless, it is
feasible to apply the averaging method. We may still introduce the quantity $(8) as
in (2.4), but it will no longer be an even function of /3. We now make the transformations

u'(p)y = k cosx; ^[$('/')/'/'2]1/2 = fcsinx; w'(c)T = s, (3.1)

where the positive square root is to be taken. Then, as is readily verified, the system
(1.9) transforms into

dk h(if) nF cos x ~ jT G (3.2)
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as Ism x
r, • , h(4>)Gt sin x + t~~ cos xk sin x (3-3)

From (1.13) and (3.1) it is seen that (3.2) and (3.3) are in a form suitable for the ap-
plication of the generalized method of averaging since, implicitly at least, \p = v(k sin x).

The first order averaged equation for k is, from (1.13), (2.1)-(2.3), (3.2) and (3.3),

dk f2Tsmx , r2" r^ci) Kf)I mdx = "i, 1/ —c "mxdx. (3.4)
ds J0 h{i) Jo L k J h{\p)

In view of the implicit relationship expressing ^ as a function of x> it is convenient to
change the variable of integration in (3.4) from x to \p. But, from (2.4) and (3.1),

sin x dx _ cc '(c) d± _ CO '(c) dxp
h(if) k2 cos x k[k2 — $(^)]2 — i.tu2 a/ imW (3-5)

Now if/ oscillates between the values — ̂ (/c) and ip*(k), where

$^*(fc)] = k2 = $[-^(/c)], (3.6)

and [k2 — $(i)]1/2 is positive during one half of the cycle and negative during the other
half. We may rewrite (3.4), using (1.15), (1.16) and (3.1), in the form

k g j [k2 - mru2 d* = 7 + ~ m]W2 cH

- n <f [k2 - mf/2 + [gll\c, y+*)~ gw(c, y)][k2 - *(0]"1"} d*,

(3.7)
and replace each integral over the cycle by twice the integral from — ip* (k) to \p*(k).

But, from (2.4), 2w'(c)h(\p) — —&(\p). Hence

/<P*W
Hm2 - mr1/2 ** = [& - = o, (3.8)-*.<*>

from (3.6), and similarly

h{i)[k2 - ${i)]W2 di = 0. (3.9)

Also, integrating by parts,

/#*«)
h(t)gm(c, 7+ i)[k2 ~ *(i)V/2dt

-*.<*>

= —h* + W - $^]1/2 d*■ (3-1())
CO (C) dip(c) J-t.M d<p

Thus, (3.7) becomes

, dk
kds [k2 - mr/2 d+

«#•(*)= — fto'(c) J_ (c- 7 + <A) + (c, 7 + i) [7c2 - $(<A)r d*. (3.11)



370 J. A. MORRISON [Vol. XXIV, No. 4

Now let us return to the case when h(\p) is an odd function of \p, so that $(\//) is an
even function of 1p. Then, from (2.5), (3.1) and (3.6),

k2 = $(«); 1>*(k) = a = ^(fc). (3.12)

Also, using (2.4),

/c ̂  = -h(a) (3.13)as d-T

The substitution = a sin 6 in (3.11) then leads to (2.12). It was considered worth-
while, however, to treat the case when h(ip) is an odd function of separately, since
the reduction of the system (1.9), to a form suitable for the application of the generalized
method of averaging, may then be carried out explicitly.
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