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A CLASS OF UNSYMMETRIC STRESS DISTRIBUTIONS IN
HELICOIDAL SHELLS*

By FREDERIC Y. M. WAN (Massachusetts Institute of Technology)

1. Introduction. In cylindrical coordinates (r, 6, z), the middle surface of a helicoidal
shell is given by the equation z = ad where the constant 2tva is the pitch of the helicoid.
It has been found earlier [1, 2, 3, 4, 5] that the solution to a class of elastostatic problems
associated with the axial extension and torsion of a thin helicoidal shell requires the
displacements of points of the shell to be multivalued in 6 while the strain and stress
distributions are independent of 6. The present work is concerned with another class
of problems for which the required displacements are multi-valued in 6 while the strain
distribution, although single-valued in 8, is no longer axisymmetric. Using a semi-inverse
procedure, it is shown in what follows that a certain multi-valued displacement state
leads to a univalued but unsymmetric strain state. The class of stress distributions
associated with this strain state is then shown to allow the solution of the problem of
bending of helicoidal shells by equal and opposite moments applied at the two ends
of the shell (Fig. 1).

2. Differential equations. The set of differential equations which governs the
elastostatic behavior of the shell is taken from [6] specialized to the case of a helicoidal
shell and cylindrical coordinates. The deformation of the shell is completely described
in this formulation by three translational displacement components u, v, and w in the
radial, tangential and normal directions and three rotational displacement components
<f)r , <£,, and co turning about axes in the tangential, radial and normal directions. Four
in-plane strain measures er , erS , e0r and t0 , two transverse shear strains yr and ye ,
and four curvature change measures nr , nre , Kir and k6 are defined in terms of the six-
displacement components by ten strain displacement relations
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e=-eo-^T0'

Figure 1.

where primes and dots indicate differentiation with respect to r and 6 respectively,
and where

a = (a2 + r2)I/2, l/R = a/a2. (2)

The ten strain measures are related to the stress measures of the shell by way of a
system of stress strain relations. For the sake of definiteness, we assume that these
stress strain relations are of the form

j*r   1 I
r ~ A( 1 - v2) ' 9 ~ 4(1 - v2) '

«,i = e9r = ^(19+ V) (Nre + N„),

(3)
Mr = D(kt + VKg), Me = D(kB + VKr),

Mre = Mer = D{1~ v) 0Kre + K,r),

7r = 7s = 0, (4)

where Nr , Nr0 , NSr and N„ are the stress resultants and Mr , MrS , Mtr and Me are
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the stress couples, and where D and 1/A are the bending and stretching stiffness of
the shell and v is Poisson's ratio.

In the absence of surface loads, the four in-plane stress resultants, Nr, NrS, NSr, Ne,
the two transverse shear resultants, Qr and Qe , and the four stress couples, Mr , MrS ,
Mer , Me , must satisfy the following equilibrium conditions:

(aNry + Nir - - Ne + - Qo = o, (aNT,y + Ni + - Ner + -Qr = 0,a a a a

(<«Qry + Qi~~ (Nre + Ner) = 0,
(5)

(aMr.)' -\- Mer — — Mg — aQr = 0, (cx.]\ITg)' + 21Ie -) Mgr — aQ0 = 0,
a a

\T ~\T 1 Mo J\'I r -
NrS — Ner + ^ = 0.

3. A class of multi-valued displacement functions. Motivated by a solution for
the bending of shallow helicoidal shells by end bending moments [7], we consider multi-
valued displacement functions of the form

7 2

u(r, 9) = U(r) sin 9 — f(l + 6~) sin 9 — 9 cos 0],

v(r, 6) = [rV(r) + aW(r)] C°^ ° (0sin 6 — 62 cos 0),

(6)
w(r, 0) = [rW(r) — aF(r)] C°S ^ + 7^ [a202 cos 9 + (a2 + 2r2)0sin 0],

a 4 a

lcdT
cj)r(r, 6) = $r(r) cos 0 — 0 sin 9,

fod
4>e(r, 0) = #9(r) sin 0 — — (0 cos 0 + sin 0),

7 2

co(r, 0) = O(r) cos 9 + — 9 sin 9.

In these, U, V, W, <1\ , and 9. are functions of r only and k is an arbitrary constant
which has the same dimension as the curvature measures. Substituting these expressions
into the strain displacement relations, we get

= U' sin 9. tre = (rV' + aW' - aQ) ,
a

/ TT T7 TT7"\ Sin 6 / T T T7" I r\\ COS 9€<?:= (rU — rV — aW) —— , e6r = (U — V + aft)  ,
a a

yr = (a$r + rW - aV') , y, = (a2$8 + aV - aU - rW)^ ,
a a

. <1 . . COS 0 . .
Kr = (a + aU) -t— , Krg = sm 9,

(7)
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, , , , > sill 0
Ker = — (a$r + r$e) —a- ,a

Kg = (r$r + a$s — aO — Jcaa) C°Sa ® ■
a

It is apparent that all ten strain measures are single-valued functions of 0.
4. Bending of helicoidal shells by end moments. Consider a helicoidal shell bounded

by r = Ti , r = r0 and 0 = ±0O, subject to equal and opposite end bending moments
at the axial edges and free of tractions otherwise. For simplicity's sake, we let the axis
of the end moments be in the direction of the x-axis. The special case with r{ = — r0
is shown in Fig. 1. Here — r0 is taken to mean the image of r0 with respect to the z-axis.

The stress free condition of the radial edges requires the satisfaction of the Kirchhoff-
Bassett conditions

Nr + = NrS = Mr = Qr + ^ = 0 (8)K a

at r = Ti and r = r0 .
Force and moment conditions at the axial edges, 0 = ±0O, are prescribed in the form

dr — - (Mr0 + MSr)
OLp■- I" [; ("■ + f) +E <«• + M»

P" = j^iVsr sin 0 + r- (n„ + cos 0 - ~ (Qs + M'»r) cos 0

p = 0,

dr

+ - (Mr, + Mer) COS 0a
= 0,

= [.Ner COS 0 - r- ( Ne + if' sin 0 + - (Qe + M'er) sin dr

- (M^ + Mer) sin 0
a

T, = J ^r.ZV9 + ~MSr - aQe — aM'tr
T- dr +
a - (Mr 9 + MBr)

Oi

Tv = - /" \_Me sin e + Ne + r-~ Mer +r-Q»+-. M'er) cos

+ (Mre + Mer) COS 0La

Tx= f" \[—Ne + r^Mer+-Qe + - Mi) sin 0 - M0 cos 0
•In ati a a /

r2
- (Mre + Mer) sin 0
Oi

= 0,

= 0,

dr

o

= 0,
 I r t

dr

r o

= M.

(9)

The nonintegrated terms in these conditions represent the corner forces introduced
by the assumption of vanishing transverse shear strain [8].

The form of stress strain relations (3) and of equilibrium equations (5) shows that
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we can write

(Nr , Ne , Mre , Mtr , Qe) = (nr , ns , mrB , m6r , qg) sin 6, ^

(NrO , Ner , Mr , Mg , Qr) = (ttr9 , Ufr , Wr , 171 g , Qr) COS 6,

where nr , nr0 , nSr , ne , qr , <?« , mr , mTo , mSr and me are functions of r only. The six
equilibrium equations can now be written as ordinary differential equations for the
n's, q's and m's as follows:

T d TO,
(cm,)' — ner ne + ~ qe = 0, (anr#)' + n„ + - ner + - qr = 0,

a a a a

(aqr)' + qe - ~ (nr0 + nSr) =0, (11)
a

r r
(amr)' + Mi, m6 — aqr = 0, (amre)' — me -\ mBr — aqe = 0,

a a

i 771 q 771 r /ionnre - ndr + -g  = 0. (12)

Correspondingly, the boundary conditions (8) at the radial edges become

I 777rQ . fTtrd /-» /-j q\
nr + -5- = nr6 = mT = qT +  = 0 (13)K a

and the integrated conditions (9) at the axial edges become

(mTe + mer)L [a (+ if) + a {Q° + ml)_

l [n«r + ^ (ne + f^) - I {qe +
r r 2 (a , a , r ar \ . 2
/ n9r cos 6 + I - q0 + - m'er ne 5 m)TJ sin

Jri L \a a a a /

a

a

0,

dr + (■mre + mer)

dr

= 0,
— r i

- (■m,e + mer) sin2 6
a

= o,

J (rne + ^ m0r — aqe — am'e}j ~ dr +
ar
a

(mTe + nie r) = 0,

2 2
I m I T I r / I \ A

ne + ~r> ™>er + ~ qe + — mr + m J dr —
art a a '

— (mre + mer) = 0,

j' |'me cos2 9 — ^ (an6 + ~ mtr + rqe + nnjr| sin2 6 dr

+ (mre + mfr) sin2 6 = M.

(14)

It can now be shown through use of the equilibrium equations (11) and (12) and of
the boundary conditions at the radial edges (13) that the five homogeneous integrated
conditions in (14) are satisfied identically, while the last condition becomes simply
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M = — mg dr. (15)

To illustrate the nature of the analysis, we note that through use of the second and
third equilibrium equations along with integration by parts, we transform the first
condition of (14) to read

cb('«("*+it)+«+m'-)

- r (s
- r c

c/r —

^ ^ ft9 ] dr -

- (mre + m,r)
q:

r
- mrg
a

v ct t
- q» 2 qr (nre + ndr)- a a

dr — r ™ i
- mrS + anrg
a

= [ (-rqr)' dr - ~ mrS = - r(qr + —)
J r i L« Jr< L \ Oi / (16)

where the right hand side vanishes because of the last boundary condition in (13).
5. The two point boundary value problem. The stress strain relations (3) and the

three equilibrium equations (12) can be used to express the n's, q's and m's in terms
of U, V, and W. Substituting these expressions into the three force equilibrium equa-
tions (11), we have an eighth order system of three ordinary differential equations for
the three unknown U, V, and W. Associated with this eighth order system are four
boundary conditions (13) at r = r{ and r = r0 . The solution of this boundary value
problem contains the arbitrary constant k which multiplies the multi-valued portion
of the displacement state (6). The constant is to be related to the applied moment M
by way of the integral condition (15). Carrying out the integration, this becomes a
linear relation between k and M which can be written as

M = Bk, (17)
where B is a function of r0 , r{ , a, v, D and A.

We finally note that our results will, for large values of a/r0 , tend towards results
which have previously been obtained through use of the theory of shallow shells of
rectangular plan form [9].
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