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AN EXTENSION OF THE METHOD OF AVERAGING*

BY

P. R. SETHNA
Brown University

I. Introduction. Consider the real system of differential equations

x = eF(t, x, e) (1.1)

where x is an n vector 0 < e ^ e0 and F is a continuous function from

B(K, e0) = {(£, x, e): t and e scalars, a: an n vector,

— oo < t < oo j 0 ^ \x\ ^ K, 0 < e ^ e0}

into Rn. Consider also the averaged system of equations

£ = eF0(Q (1.2)

where

Fa{Q = lim \ f* F(t, {, e) dt. (1.3)
T-> co i J 0

The method of averaging [l]1, [2] is concerned with establishing relationships between
solutions (or integral manifolds) of (1.1) and solutions of (1.2). In general, it shows that
the existence and stability properties of certain solutions of (1.2) determine the existence
and stability of the corresponding solutions of (1.1) and that solutions of (1.1) approach
in some sense the solutions of (1.2) as e —* 0. In its standard form the results of the method
fall into two categories. They are, respectively, results valid for finite and infinite time
intervals. For the finite time results one merely requires the existence of (1.3), and the
solutions of (1.1) and (1.2), starting with the same initial conditions, are shown to stay
close to each other at each t, in a time interval proportional to e~', for e sufficiently
small. For the results valid for infinite time, F is assumed to be almost periodic in t
uniformly in x for each fixed t, 0 < f S f,, and it is shown that almost periodic solutions
of (1.1) stay close to certain constant solutions of (1.2) for all time, for e sufficiently
Kmall. The results as established for equations of the type (1.1) have been applied very
successfully to numerous problems of physical importance.

There are, however, a large class of physical problems which generate differential
equations more general than (1.1) in which the function F depends not only on the time
t but also on a slow time el. Specifically, the system equations take the form

x = eF(t, tt, x, e) (1.4)

where x and F are n vectors, 0 < e ^ e0 and F is a continuous function of its arguments
for all t and 0 ^ |z| ^ K. One can again construct an averaged system corresponding to
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(1.4) by averaging over t and regarding et as constant during averaging. With appro-
priate conditions on the function F, results analogous to the finite time results for the
standard form of the method of averaging can be obtained. See, for instance, Mitro-
polsky [3] and also Volosov [4] who treats systems even more general than (1.4). Al-
though these results are useful in many technical applications there are other applica-
tions where results valid for finite time intervals are inadequate.

Consider for example a physical system which can be described by the system of
equations

g = GK«<,z) (1.5)

where x is an n vector and G is a continuous function of its arguments into Rn. In equa-
tion (1.5) t, co and v are real, x an n vector, — oo < t < o°, 0 ?£ |x| :§ X and u > 0,
v > 0. Let G be periodic in cot and vt with period 2ir and suppose v = e~l where € is very
small and positive and let co be of order zero in «. Now let r = vt = be the "fast time",
then (1.5) takes the form

= tG(r, uer, x) (1-6)
Br

Now (1.6) is of the form (1.4), but results valid for r e [0, Lt'1}, for L, some constant,
are valid in the physical time 11 [0, L], which is often not long enough to make the results
useful.

We will, therefore, be interested in results valid for all time for dynamical systems
depending simultaneously on a fast and a slow time. It will become necessary to take a
slightly special form of (1.4) and the system equations will be assumed to be almost
periodic in the fast time and periodic in the slow time. The asymptotically valid method
of analysis will be stated in the form of a theorem, which is a generalization of the theorem
on the method of averaging in the form valid for all time [5] and the method will then
be applied to a physical example which is a generalization of one discussed by Bogo-
liuboff and Mitropolsky in [6].

II. A theorem on a generalization of the method of averaging. In many physical
examples the fast and slow behavior in (1.4) can be separated so that the system equa-
tions are of the form

x = «/(<, x) + eg(et, x) (2.1)

In (2.1) / and g are continuous functions from B(K) = {(£, x): t is a scalar, a: an n
vector, — oo < t < co, |z| ^ into R" having continuous second partial derivatives with
respect to x. The function / is almost periodic with respect to t uniformly for \x\ ^ K
and the function g is periodic in d of period L, where L is a fixed constant.

Our main result establishes a relationship between the almost periodic solutions
of (2.1) and the corresponding periodic solution of a related averaged system in which
the average is taken over / alone.

That is, we define the average of / to be

/„ft) = lim f fit, £) dt, (2.2)
T-»co -L Jo

and then consider the equation



1967] AN EXTENSION OF THE METHOD OF AVERAGING 207

£ = e/o(£) + eg(et,Q = (2.3)

The existence and stability properties of periodic solutions of (2.3) then determine the
existence and stability properties of the almost periodic solutions of (2.1) and furthermore
the almost periodic solutions of (2.1) approach the periodic solutions of (2.3) as e —> 0.
More precisely we have:

Theorem. Let £*(«£) be a periodic solution of Eq. (2.3) of period L/e in t which to-
gether with a p neighborhood remains in the interior oj the set B(K).

If the variational equation of (2.3) with respect to £*, that is,

% = fto)*- (2-4)

has no pure imaginary characteristic exponents then there exist positive constants e,
and <r, 0 < £j ^ e0 , 0 < a :£ p such that for each e, 0 < « ^ ej , there is a unique
almost periodic solution x*(t, e) of (2.1) that satisfies |x*(t, e) — £*(eOl < cr
for — co < t < oo, and x* is continuous in e and has the properties

(i) lim |x*(t, e) - £*(ei)| = 0,
«—»0

(ii) the stability properties, in the sense of Liapunov, are the same as those of the
zero solution of (2.4).

The method of proof is to reduce system (2.1) by a series of transformations to a
new system of equations and then use a corollary based on a theorem of Hale [7].

For reference we will state this theorem here but in a slightly weaker form which is
a form more appropriate for our purposes.

Theorem A. Consider the system

x = Ax + q(t, x, e) (2.5)

where x is an n vector, A is a constant n X n matrix all oj whose eigenvalues have nonzero
real parts and q is a continuous junction jrom B(K, e0) = {(<, x, e): t and e are scalars,
x an n-vector, - co < t < c°, 0 < e <; e0 , H ~ K) into R". The junction q is almost
periodic in t uniformly with respect to x and has continuous partial derivatives with re-
spect to x. Let q, denote the Jacobian matrix of q with respect to x.

If
lim qz{t, x, e) =0 uniformly in t (2.6)

t-+0\x-+0

and

lim q(t, 0, e) = 0 uniformly in t, (2.7)
<-•0

then there exist positive constants a and ei , 0 < <r ̂  K, 0 < tj 5= e0 , such that for each
e, 0 < e ^ there is a unique almost periodic solution x*(t, e) of (2.5) in B{<r) that is
continuous in e and lim,_0 x*(t, e) = 0 uniformly in t.

Moreover, the stability properties of x in the sense of Liapunov are the same as the sta-
bility properties of y = 0 for the equation y = Ay.

Since when we average (2.1) we are led to consider equation (2.3) which has periodic
linear terms, we require the following extension of Theorem A.
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Corollary. Consider the equation

x = A(t)x + q(t, x, e) (2.8)

where A(t) is a continuous periodic n X n matrix function of t, and q is as in the above
theorem. If none of the characteristic exponents of the solutions of

V = A(t)y (2.9)

are pure imaginary then there exist positive constants e, and a 0 < e, ^ e» , 0 < a ^ K
and a unique almost periodic solution x*(t, t) of (2.8) for each «, 0 < eg , contained
in B(a). Furthermore, lim,^0 x*(t, e) = 0 uniformly in t and x* is continuous in e.

Moreover, the stability properties of x*, in the sense of Liapunov, are the same as the
stability properties of the solution y = 0 of (2.9).

Proof. By the Floquet representation theorem there exist a continuous periodic
n X n matrix function P(t) and a constant matrix B such that the fundamental matrix
solution of (2.9) is

Z(t) = P(t) exp Bt.

Let x{t) = P(t)z{t) and then (2.8) becomes

i = Bz +p~1q(t, Pz, e). (2.10)

The corollary follows by applying Theorem A to (2.10).
In order to use the above corollary to establish the main theorem we must change

variables in (2.1). This change of variables, as in the standard form of the method of
averaging, is based on the following lemma due to Bogoliuboff and Mitropolsky [1].
The form of the lemma stated here is a restricted case of the form as given by Hale [8].

Lemma. Suppose fit, x) is a continuous function from B(a) into Rn and has con-
tinuous partial derivatives with respect to x and is almost periodic in t uniformly with re-
spect to x. If the average value of fit, x) with respect to t is zero, then there exists a function
w(t, x, e) from B(<r, e0) into R", almost periodic in t uniformly in x which has a first partial
derivative with respect to t, derivatives of any order with respect to x, and another function
h(t, x, e) from B(<r, e0) into R" and such that

h(t, x, e) = ~ - f(t, x)

and |hit, x, e)[, |dh/dx it, x, e)| —> 0 as e —» 0 uniformly in t and x and tw, e dw/dx —> 0
as e —» 0 uniformly in t and x.

We are now ready to prove the main theorem.
Proof. Let

x = £ + twit, e) (2.11)

where

^ - fit, x) + foix) = -hit, X, e) (2.12)
ot

where wit, x, t) and hit, x, t) satisfy the conditions of the above Lemma.
Substituting (2.11) in (2.1)
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(7 + 4 If)* + e a? = eW + m' ^ ~ m] + tg{d' ̂
+ «[/(') £ + cw) — 1(t, £)] + £ + ew) — g(et, £)]

which after using (2.12) can be written as

/o(£) + h(t, £, e) + g(et, £)

+ « f* («, &)»(«, £) + e ̂  (ef, fe)u>(«f £)]

where and £2 are points on a line joining $ and £ + ew and TF is a matrix, |TP| of order
zero in e.

Thus we have a system of the form

I = e[/o(£) + g(tt, £)] + th(t, £, e) + t, £, «)

£ = eG(et, £) + A(t, £, e) + e2$(ei, *, £, e) (2.13)

where

*= (K+f)w+w(j°+9+k+e %+e %
Now let £*(e£) be a periodic solution of period L/e in t of

£ = eG(et, £)

and let
£ = £* + * (2-14)

in (2.13). Then we have

i = eA(et)z + e[G(et, £* + z) — G(et, £*) — A(et)z]

+ eh(t, £* +z,<) + t, £* + z, e) (2.15)

where

A(et) ±§(d,?(d)).d£

Now (2.15) is in the form to which the corollary to Theorem A can be applied.
Applying the corollary and tracing back through transformations (2.14) and (2.11)
we have the proof of the theorem.

III. An application. A damped sinusoidally excited pendulum with a vertically
oscillating support can be represented by the equation:

le + (! + r^d?~)sin q + F cos ut = ~D (31)

where q is the angular coordinate measured from the bottom position, h(vt) is a con-
tinuous and periodic function of vt with period 2x, v — e-1, 0 < e <SC 1 and where D, F
and co are real positive parameters independent of e.



210 P. R. SETHNA [Vol. XXV, No. 2

In order to transform (3.1) into form (2.1) it is desirable to treat all but the term
with D in (3.1) as derivable from the Hamiltonian

iir t\ 1 T 2 0 dh . (dhY 2Hip, q, t) = ~ [p - 2p -sin q - {-) cos q + (1 — cos q) — qF cos ut

where p is the momentum conjugate to the coordinate q and the equations of motion
are:

dq dh
~ 'sin q,

(3.2)
dt = P~diSmq

dp
dt

dh . 1 (dhY . .
-p cos 2 + 2 I~dl) sm 2? + sin q — r cos ut -D[p-^smq

We will assume h(vt) = el(vt), a quantity of order c, and let vt — t be the fast time.
Then denoting by prime derivative with respect to r we have:

q' = e[p - I' sin q], ^ ^

p' = e[pl' cos q — %(l')2 sin 2q — sin q — Dp + Dl' sin q] + eF cos e ut

and we have the problem expressed in terms of a part periodic in the fast time (the
quantity in the square bracket) and another part periodic in ex, the slow time.

The equations corresponding to (2.3) in the theorem are then

Q' = d>' _ (3.4)
A2— sin Q cos Q + sin Q + DP + eF COS e cor

where (P, Q) corresponds to the vector £ and where the function lir) = A sin r.
Combining the equations in (3.4) and writing the resulting equation in terms of

the original time we have

^ + (l + -^ cos sin Q = F cos wt. (3.5)

We see from the theorem that almost periodic solutions of the original equation (3.1)
approach the corresponding periodic solutions of (3.5) for e sufficiently small, that is,
under conditions of high frequency small amplitude support motions. If F = 0 in (3.4) and
(3.5) the well known results of Bogoliuboff and Mitropolsky are applicable. In fact,
they, by a different set of transformations, obtain (3.5) with the right side zero. In this
case the constant solutions Q = 0, Q = ir, Q = cos-1 (2/A2) are of interest. It is seen,
for example, that the constant solution Q 7r, for D > 0 is stable if 1 — A2/2 < 0,
and thus the pendulum can execute stable motions in the neighborhood of its vertically
up position. This is a result also derivable from the classical theory of the Mathieu
equation.

The theorem proved here can be used to give not only results of the type given
above but also other results that arise from the nonconstant periodic solutions of (3.5).
Equation (3.5) is of course nonlinear and in most applications equations corresponding
to (2.3) in the theorem will be nonlinear. If, however, one can assume in a given physi-
cal situation that some new parameter is small, then the well known methods of getting
approximations to periodic solutions can be used.
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If in the case of (3.5), for example, F can be regarded as small in some new param-
eter and if I) is of order zero in p., then with the aid of a simple transformation and
Theorem A, it can be shown that (3.5) can have stable periodic solutions of period
2ir/co in the neighborhood of Q = 0 and Q = ir and thus the pendulum can have stable
almost periodic motion with frequency basis o> and vr in the neighborhood of the bottom
or top positions. If F and D can both be regarded as small in some parameter n and if
the value of u is in the neighborhood of 1 + A2 / 2 or A2 / 2 — 1, one can have periodic
solutions of (3.5) near Q = 0 or Q = ir respectively and these solutions exhibit "jump"
behavior similar to that associated with Duffing's Equation. One can thus predict that
the pendulum can have stable almost periodic motions with jump type behavior not
only in the neighborhood of the bottom position but also in the neighborhood of the
top position.

The above example is typical of a large class encountered in applications. Physical
systems that are nonautonomous and that have very high frequency time dependent
terms have been discussed by Landau and Lifshitz [9], Bogdanoff [10] and Lowenstern
[11], Sethna and Hemp [12] and others. For problems of this type the standard method of
averaging is applicable. If, however, in a given system along with these high frequency
time dependent terms, time dependent terms of much lower frequency occur, the results
of the generalized form of the method of averaging as given here become necessary.
Hemp has been able to predict, by using the method of analysis given here, the oc-
currence of quite remarkable physical phenomena in high order systems of the type
discussed above. These results will be given in a forthcoming publication.

Acknowledgements. The author wishes to express his appreciation to Dr. J. K.
Hale and Dr. K. R. Meyer for advice and help when this study was in progress. The
author also wishes to thank the Air Force Office of Scientific Research for its financial
support of this work under GRANT AF-AFOSR-704-66.

References
1. N. M. Bogoliuboff and Yu. A. Mitropolsky, Asymptotic methods in the theory of nonlinear oscillations,

Gordon and Breach, New York, 1962, Chaps. 5 and 6
2. J. K. Hale, Oscillations in nonlinear systems, McGraw-Hill, New York, 1963
3. Yu. A. Mitropolsky, Problems of the asymptotic theory of nonstationary vibrations, Daniel Davey,

New York, 1965
4. V. M. Volosov, The method of averaging, Dokl. Acad. Nauk SSSR 137, 21-24 (1961) = Soviet Math.

Dokl. 2, 221-224
5. N. M. Bogoliuboff and Yu. A. Mitropolsky, Asymptotic methods in the theory of nonlinear oscillations,

Gordon and Breach, New York, 1962, p. 497
6. N. M. Bogoliuboff and Yu. A. Mitropolsky, Asymptotic methods in the theory of nonlinear oscillations,

Gordon and Breach, New York, 1962, p. 404
7. J. K. Hale, Oscillations in nonlinear systems, McGraw-Hill, New York, 1963, p. 123
8. J. K. Hale, Oscillations in nonlinear systems, McGraw-Hill, New York, 1963, p. 116
9. L. D. Landau and E. M. Lifshitz, Mechanics, Pergamon Press, 1960, pp. 93-95

10. J. L. Bogdanoff, Influence on the behavior of a linear dynamical system of some imposed rapid motions
of small amplitude, J. Acoust. Soc. Amer. 34, 1055-1062 (1962)

11. E. R. Lowenstern, The stabilizing effect of imposed oscillations of high frequency on a dynamical
system, Philos. Mag. 13, 458 (1932)

12. P. R. Sethna and G. W. Hemp, Nonlinear oscillations of a gyroscopic pendulum with an oscillating
point of suspension, Proc. Colloq. Internat. du Centre National de la Recherche Scientifique N- 148,
Les vibrations forcees dans les systemes non-lineaires, 1964, pp. 375-392


