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ON GUNTHER'S STRESS FUNCTIONS FOR COUPLE STRESSES*

BY

DONALD E. CARLSON
Department of Theoretical and Applied Mechanics, University of Illinois, Urbana

1. Introduction. In the absence of body forces and body couples, the stress equa-
tions of equilibrium for a continuum which can support couple stresses1 may be written as

Ui.i = o, (L1)
MLi;, i ~f~ Zjkl^kl ' * 0

when referred to rectangular Cartesian coordinates.2 Giinther [3] has observed that a
solution of Eqs. (1.1) is provided by

t ■ = e FLtj *tpql a, ,j> , 2)

Wlij ^ipQ^Qi.v ^ii^pp ] i 1

where the tensors Fu and are arbitrary.3 The stress field defined by Eqs. (1.2) will
be referred to as Giinther's solution or Giinther's representation, and the tensor fields Fa
and Ga will be called Giinther's stress junctions.

It was pointed out in [4] that Giinther's solution is generally incomplete, i.e., there
exist solutions of Eqs. (1.1) which cannot be represented by Eqs. (1.2). Several com-
plete solutions were given in [4], and a simpler complete solution was given in [5]. How-
ever, all of these solutions are considerably more complex than Giinther's solution in
that they involve more scalar stress functions and higher order derivatives.

Because of its appealing simplicity, it is natural to ask what class of stress fields
can be represented by Giinther's solution. A more compelling reason for such a question
is that Giinther [3] and, more recently, Misicu [G] have made Giinther's representation
the basis of dislocation theories. These theories are left in doubt until it is known that
Giinther's stress functions can represent stress fields of sufficient generality. It is the
purpose of the present paper to answer the above question.

In Sec. 2 two general representation theorems for (sufficiently smooth second-order)
tensor fields are proved. The first of these states that any tensor field can be written as
the curl of another tensor field plus the gradient of a vector field. The second theorem
states that any tensor field with zero total flux across every closed surface in the region
involved can be written as the curl of another tensor field. In analogy with classical
theorems of vector analysis, these results may be called the Stokes-Helmholtz resolution

*Received September 1, 1966.
'A Cosserat [1] continuum is an example of such a material. A modern treatment of the concept of

couple stresses has been given by Truesdell and Toupin [2],
2We employ the usual indicial notation of Cartesian tensor analysis. Latin subscripts have the range

(1, 2, 3), and summation over repeated subscripts is implied. Subscripts preceded by a comma indicate
differentiation with respect to the corresponding Cartesian coordinate. Kronecker's delta and the
alternating symbol are denoted by S,-,- and respectively.

3Here and in the sequel any obvious smoothness requirements will not be stated.
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and the theorem of the terisor potential, respectively. It will be clear from our proofs that
theorems like these hold for tensor fields of all orders except zero. In the second-order
case, the Stokes-Helmholtz resolution was given recently by Mindlin [7]; and the
tensor potential theorem was inferred from the vector version by Gurtin [8]. Here we
choose to give similar proofs based on significantly different smoothness hypotheses.

In Sec. 3 the notions of equilibrated and totally self-equilibrated stress fields are
reviewed. In Sec. 4 it is shown that Giinther's solution can at most represent totally
self-equilibrated solutions of Eqs. (1.1). The theorem of the tensor potential is then used
to prove that every totally self-equilibrated stress field admits Giinther's representation.
Finally, in Sec. 5 the Stokes-Helmholtz resolution is used to introduce a solution of
Eqs. (1.1) which is complete even if the stresses are not totally self-equilibrated.

The results of this paper are analogous to certain theorems concerning the Beltrami
stress functions for nonpolar continuum mechanics. In fact Gurtin's [8] definitive work
on Beltrami's solution was used as a guide in carrying out the research presented here.
One exception is that the proof of the tensor potential theorem is patterned after
Stevenson's [9] proof of the vector potential theorem as was the author's [10] completeness
proof for the Beltrami representation. It is interesting to note that because the stress
tensors being represented are not required to be symmetric, the theorems on Giinther's
stress functions are more readily obtained than are those on Beltrami's stress functions.

2. Some tensor representation theorems. For the remainder of the paper R will
denote a bounded open region of three-dimensional Euclidean space. The boundary of R is
dR, and the unit outward normal to dR is n. We write / t C[(R) {or ft C[{R + dR) j if
and only if / is a real-valued function continuous and N times continuously differentiate
on R {or R + 5ft} whose iVth-order derivatives are Holder continuous with exponent
X < 1 on R {or R + dR}.

Theokem 2.1 (Stokes-Helmholtz Resolution). Let dR be two times continuously
differentiable. Let 4>a e C°X(R + dR) and </>,■,• t CNX(R). Then there exist Qif t C{(R + dR),
tin i Cf+l(/2), and o>,- t C\{R + dR), ajf e Cx+1(R) such that

<t>a = + «i.< on R + dR.
Moreover, 12,,-,,- = 0.

Proof. Define Ati on R + dR through

4>M)

It follows from well-known results on Newtonian potentials [11], [12] that

Aif B Cl(R + dR), Au t CV\R),
and

V*A,i = 4>n on R + dR. (2.1)
Also one has the identity

^7 Aij tipqtqmnAnj , mp "f- Ap,\pi , (2.2)

as is readily verified with the aid of

~ • (2.3)
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The proof is completed by setting

EqmnA-nj ,m

and

co j- Avj,v

in Eq. (2.2) and then using Eq. (2.1).
The hypotheses of Theorem 2.1 differ from those usually assumed in theorems of

this type in that dR is required to be quite smooth and the continuity conditions on </>,-,■
and its derivatives are of the Holder type. Because of these assumptions, the repre-
sentation has the same smoothness properties as 4>a and holds on dR as well as on R.
This observation is due to Stippes [13].

Theorem 2.2 (Tensor Potential Theorem). Let OR consist ofn + 1 closed surfaces
Sa (o = 0, 1, • • • , n) each of which is four times continuously differentiable. Let <£,-,• have the
following properties:

(i) </>,-,• e Cl(R + dR), <#».-,• e Cl(R) with N > 2,
(ii) <£„,,• = 0,

(iii) / dA = 0 (a = 0, 1, • • • , n).4
•>8.

Then there exist 0j( e C'l(R + dfi), ft,-,- e C*+1(R) such that

<fia = e.pA,-.p on R + dR.
Moreover, Otlii = 0.

Proof. Number the surfaces Sa so that S0 encloses Si, S2, ■ • ■ , Sn . Let Ra denote
the open region interior to the surface S„ (a = 1, 2, • • • , n), and let R» denote the open
region exterior to S0 and interior to <S' where S' is any finite spherical surface which
encloses S0 .

Next introduce functions ^ with the properties:

c Cl(Ra + Sa),

VV,U) = 0, (a = 1, 2, ••• ,n) (2.4)

n^i = <t>ani on S"»
and

£ Cl(Ro + So + S'),

Wi01 = 0, (2.5)
on S0 , =0 on S'*

The existence of the solutions of these Neumann problems is guaranteed by (i), (iii),
and the smoothness of Sa [12], Of course on the open region Ra , 4/<ja) will be analytic.

'According to the divergence theorem, hypotheses (ii) and (iii) are equivalent to the requirement
that /s (#),•,• ra, dA = 0 for all regular closed surfaces 5 contained in R + dR.

'Recall that on Sa n points out of R. On S' we take n to point out of R0.
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By Eqs. (2.4) and (2.5) functions defined by <f>\f = have the properties:

e C{(Ra + Sa), analytic on Ra ,

4><°!,= 0, (a = 1,2, ••• ,n) (2.6)
= <£<,«< on £„ ,

and

0'°' c Cj(fl0 + -So + -SO, 0"' analytic on R0 ,
= 0, (2.7)

= <j>xjni on S0 , = 0 on <S'.

Finally, define Z?,, on 7? + <9/i through

(,8,

Then [11], [12] B„ e Q(R + dR), Bti t C?+2(R), and

V2£„- = on R + dR. (2.9)

Again we have the identity expressed by Eq. (2.2), i.e.,

V B ij £ipqGqmnBnj t mp ~f" Bpj . (2.10)

We assert that

Bvi,v = 0. (2.11)

Granting this for the moment, we set

&qj tqmnBni ,m (2.12)

and obtain from Eqs. (2.9)-(2.12) that

0»i €<pQ^aj,p •

Furthermore, it follows from Eq. (2.12) that fi<,- t C{(R + dR), 0,-,- e C"+1(R),
and Oiiit- = 0.

In order to show that B, ,■ = 0, we note from Eq. (2.8) and integration by parts
[11] that

4>./.,-q) ,T, v r MZMO .' , ^ r
|x - ?+ £ /jfl [X — <| a = 0 Jsa |X — o = 0 J/e<

+ 2 f tmsMiAl _ f . (2.13)
o-O Js. |X ./s- |X ^1

Equations (2.13), (2.6), (2.7), and the hypothesis that 4>ijwi = 0 imply that i?< = 0-
This completes the proof.

3. Equilibrated and totally self-equilibrated stress fields. A stress field (tih m,,) is
said to be equilibrated if and only if and mu satisfy Eqs. (1.1).

The resultant jorce and the resultant moment (about the origin) of an equilibrated
stress field (£,-,- , m,-,) on a closed surface S (contained in R + dR) are given by
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Tj(S) = [ tt,n{ dA (3.1)
Js

and

Mj(S) = [ miinidA+ [ tikixktnni dA, (3.2)
J S J s

respectively, where n is the unit outward normal to S.
An equilibrated stress field is said to be totally self-equilibrated if and only if

T,(S) = Mj(S) = 0
for every closed surface S in R + OR. The following theorem shows that if dR consists
of more than a single closed surface, then there is a considerable distinction between
equilibrated and totally self-equilibrated stress fields.6

Theorem 3.1. Let dR consist of n + 1 closed surfaces Sa (a = 0, 1, • • • , n). Let
(;tn , rriij) be an equilibrated stress field. Then (t{j , mi;) is totally self-equilibrated if and
only if

T,(Sa) = M,(Sa) =0 (o = 0, 1, • • • , n). (3.3)

Proof. Suppose (f,-,- , to,,) is totally self-equilibrated. Then by definition Eqs. (3.3)
hold. Conversely, suppose Eqs. (3.3) are satisfied. Then by Eqs. (1.1), (3.1), (3.2),
(3.3), and the divergence theorem; it follows that for any closed surface S

T,(S) = Mj(S) = 0,
i.e., (£.,- , to,-,-) is totally self-equilibrated.

It is important to note that it is easy to give examples of equilibrated stress fields
which are not totally self-equilibrated [8],

4. Giinther's solution. It was pointed out in Sec. 1 that Giinther's solution defines
an equilibrated stress field. In this section we will show that stress fields given by Giin-
ther's representation are necessarily totally self-equilibrated and that all totally self-
equilibrated stress fields admit Giinther's representation.

Theorem 4.1. Let the stress field (tu , to,-,) be given by

tij tivqF Qi ,v >

tv ■ ■ —— f ■ (t ■ ~l- 5 • -F — F ■ •"vi] ctPQyjQ],P I vv x j» •

Then (£<,• , to,-,) is totally self-equilibrated.
Proof. Let S be any closed surface in R + dR. Then by Eq. (3.1)

T,(S) = [ tivaF„j,vni dA. (4.1)
J s

For each fixed j, the right hand side of Eq. (4.1) is the integral of the normal component
of the curl of a vector field over the closed surface S. Hence by Stokes' theorem, T, (/S) =0.

From Eq. (3.2)

Mi(S) = [ eipQGai,„ni dA + [ (5,,FOT — Fj^nidA + f ejkieiI,qxkFaiiPni dA. (4.2)
Js JS Js

6Of course if dR is a single closed surface, then every equilibrated stress field is necessarily totally
self-equilibrated.



144 D. E. CARLSON [Vol. XXV, No. 2

Using the identity

ZkFil.v = al),V ~ ^kpFqi >

Eq. (2.3), and Stokes' theorem; we obtain

f e,kif<v<,XtF,i,Pni dA = - f (BijF,, - Fjjrii dA. (4.3)
J s J s

Equations (4.2), (4.3), and Stokes' theorem imply that M,(5) = 0. Therefore (<,-,■ , m<()
is totally self-equilibrated and the theorem is proved.

Theorem 4.2 (Completeness of Gunther's Representation). Let dR satisfy
the hypotheses of Theorem 2.2. Let the stress field (<,-,- , m,-,) be totally self-equilibrated and
meet the conditions:

tu t Cl(R + dR), tu1 C"t(R),
mu £ C\(R + dR), m,-,- e Cl(R)

where N > 2. Then there exist F{i i C{(R + dR), Fit t C"+I{R), and t C\(R + dR),
Ga t C"+1(R) such that on R + dR

f.. = f. TP .L*1 c»pax qi ,p )

TTlij ,p ^ij^pp ^i» •

Proof. By Theorem 3.1 we can apply Theorem 2.2 to tit . Thus there exist
Fu t C\{R + dR), F^ t C?+\R) such that

tij tipqFqjlV . (4.4)

Next consider

H<t - ma - 5ijFTP + F,, . (4.5)

Clearly II u e Cl(R + dR) and H{i t C"(R). Let S be any regular closed surface in R + dR-
Then Eqs. (4.5), (4.4), (4.3), (3.2), and the assumption that (<4)- , m,-,) is totally self-
equilibrated yield

[ Hi:ni dA = M,(S) = 0.
J s

Hence Theorem 2.2 can be applied to Ha . Thus there exist Gu e C\{R + dR),
Ga c C"+1(R) such that

TT __ ri

or by Eq. (4.5)

ma tipqGqj ,p *~H ^ijFpp Fji •
This completes the proof.

5. A generalization of Gunther's solution. If the stress field (<,,■, mu) is not totally
self-equilibrated, it is clear from the previous section that Gunther's solution is not
complete. In this section we will use the Stokes-Helmholtz resolution to give a suitable
generalization of Gunther's representation.

Here the inclusion of body forces and couples will present no difficulties, and ac-
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cordingly we write the equilibrium equations as

tii.i 0) ^

"lii.i + tjtitki + Cj = 0.

In Eqs. (5.1) ?>,• is the body force per unit volume and c, is the body couple per unit
volume.

The following theorem, which provides a solution of Eqs. (5.1), may be confirmed
by direct substitution.

Theorem 5.1. Let /,■ and gf satisfy

V2/,- = —bj, ^72Qi + tjkifi.k — ~Cj .

Define the stress field (<,-,■ , m,-,) through

t\j tipqFqj^ + /,*,» J

n%a ,v ^ii^pp ^ii Qi.i i

where F a and (?<,• are arbitrary, then (i,-; , m<,-) satisfies Eqs. (5.1).
The next theorem shows that this solution, which may be called the generalized

Giinther representation, is always complete.
Theorem 5.2. (Completeness of the Generalized Gunther Representation).

Let tn and m,-, meet the conditions:

tu s Clin + dR), U.-zCKR),

mti £ Cl(R + dR), mi{ e Cl{R).
Then there exist Fu , /,■, (?<, , and <?, each in the classes C{(R + dR) and C*+1(R) such that
on R + dR

tij ^ l p Q q i , p fi.i J

ma ^xpqGq]',p ""H ̂ijFpp Fji I Q i ,i '

Furthermore, if N > 1 and tu and mu satisfy Eqs. (5.1), then

V2/,- = -6, , V2gi + e= -e, ■

Proof. By Theorem 2.1 there exist Fa t C'l(R + dR), Fu t C"+1(R), and
/,• t C{(R + dR), fi £ C"+1(R) such that

tij tipqFqj,j> fi.i ■
Again by Theorem 2.1 there exist G,tC{(R + dR), Gu e C%+1(R), and g( t C{(R + dR),
g{ e C"+1(R) such that

THij 8,jFpp ~i~ F; ^ivJ^ai.v ~1~~ (Ji.i •

The proof is completed by substituting these representations into Eqs. (5.1).

Note Added in Proof. In correspondence received after this paper had been sub-
mitted for publication, Professor Schaefer pointed out that he had already given (in
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a lecture delivered in September, 1965 in August6w, Poland) the following complete
solution to Eqs. (5.1):

,v fi,i t

Wlij tipq(*qi,p ~f~ ̂ ii^pv Fit + t<,'p/p ""f" Qi.i j

where

V2/,- = -b,- , V2g< = -Cj .

The completeness of Schaefer's solution may be established by applying Theorem 2.1
to tn and m,, — 6{jF„ + Fj{ — e,;J„ .
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