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REDUCTION OF THE THIRD BOUNDARY VALUE PROBLEM BY MEANS
OF HARMONIC FUNCTIONS*

By CLIVE R. CHESTER (Polytecknic Institute of Brooklyn)

1. Introduction. Let © be a simply connected domain in the zy plane whose bound-
ary, 09, is analytic. Let a(s) and h(s) be given continuous functions of the parameter s
on 99D. Consider the following third boundary value problem (sometimes called the
Robin problem, [3], or the Churchill problem, [6]):

V%=0 in D, (12)
¢, — a(s)¢ = h(s) on ID. (1b)
Here ¢, denotes the normal derivative of ¢ in an outward direction.

In [1] the theory of analytic functions of a complex variable was used to reduce (1)
to a first boundary value problem. Since an analytic function of a complex variable is
equivalent to two conjugate harmonic functions, it seems plausible that the method
of [1] could be carried out using only harmonic functions and remaining completely
in the domain of real numbers. To do this in general is not as easy as it might seem
primarily because the separation of the solution obtained there into real and imaginary
parts is somewhat involved. In the present paper, we shall indicate some special cases
in which it is possible to instrument the ideas in [1] using only harmonic functions. In
the last section we also mention a generalization of the method of complex variables
to more general types of boundary value problems.

2. Reduction to a first boundary value problem. Under conditions to be formulated
below, (1) can be reduced to a first boundary value problem as follows. First find a
nonconstant harmonie function, u(z, y), which is constant on 9D. (v may have singu-
larities.) Let v(z, y) be the conjugate of u. Then in a neighborhood of 3D, at least,

a = u(xy y)? (23’)
B = vz, ) (2b)
can be introduced as curvilinear coordinates. In these coordinates, 4D is given by

a = constant = «, (say). Hence 8 is the running coordinate on 9.
Since @ = const. is the equation of 9D,

bn = |Va| ™" (et + aydy) = [Va|™' [a(bae + ¢aBe) + o (ba, + ¢68,)]. ®3

Since a and B8 are conjugate harmonic, this reduces to

¢. = |Va| ¢, . (4)
Therefore, (1b) becomes
[Va| ¢pa — alBip = h(B) for a = a, (5)
or, with
c(B) = [Val" a(®) and ¢(8) = Vel h(g), (6
¢a — cB)p = g(B), for a=a. (72)
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Since « and B are conjugate harmonic, ¢ still satisfies the potential equation,

V' = ¢aa + ¢ = 0, (7b)

where now « and g are the independent variables.

If ¢(B) is independent of B, then we can reduce (7) to a first boundary value problem.
To do this, we first find a harmonic function H(a, 8) (with singularities, if necessary)
such that

H(e, , B) = g(8). ©)]

Finding such a harmonic function means solving a first boundary value problem.
Once its solution has been found, the harmonic function ¢(e, B), satisfying (7), is ob-
tained by replacing g by H in (7a) and solving the resulting equation, looked at as an
ordinary differential equation for ¢ as a function of a. To be precise, define

8. 8) = exp () [ exp (~cd)H(@, ) da + k exp e, ©

where ¢ is the (constant) coefficient in (7a) and k is an arbitrary constant. Then ¢ is
harmonic if H is harmonic and ¢ satisfies (7a) if H satisfies (8). These facts are immedi-
ately verified by differentiation. Again we emphasize that H may have singularities, so
that (9) may, in some cases, hold only in a sufficiently small neighborhood of @ = a, .

3. Examples. (1) D = the upper half plane, 9D = the z axis, a(s) = a (constant).
In this case, take @ = u(r, y) = y. Then 8 = v(z, y) = —z. Hence (cf. [5])

8(2,9) = exp @) [ exp (—anH(z, 1) dn.

More precisely, since the boundary is given by y = 0, we take y, = 0 and have

8@, 9) = e (@) [ exp (~anH(a, n) dn.

H(z, y) can, of course, be written down explicitly in terms of the boundary values,
h(x), by means of Poisson’s formula.

(2) 9D = the unit circle, a(s) = a (constant). In this case, take « = u(r, y) = logr.
Then 8 = v(z, y) = 6. Hence (cf. [2])

o, 0) = [ o7 H(p, 6) dp.

If D is the exterior of the unit circle, then it is natural to take r, = « and obtain
8,0 = [ 57 HG, 0) d,

which agrees with Eq. (15) of [1].

4, Remarks on the method. As is obvious by a comparison of the two, the method
of the present paper is far more restricted than that of the previous one. The primary
reason for this seems to be the fact that whereas the product of two analytic functions of
a complex variable is again an analytic function, the analogue is not true for two har-
monic functions. The trouble, loosely speaking, is that their conjugates get into the
act. Therefore the use of complex variables makes feasible the solution of a much wider
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class of problems than does the method of the present paper. The method of the present
paper does show, however, why most of the authors in the various references cited in [1]
were forced to restrict themselves to such highly special cases as they did.

In closing, we remark that the method of [1] is obviously not restricted to third
boundary value problems. Suppose the boundary condition is of the form (for a different
method of treating this BC, see [4, Chapt. 9])

[0 24 16 %] 4 o0 -
iZl [ai(s) ani + b,-(S) asf + C(S)(‘,’) - h(S), (10)
where a; , b; , ¢ and h are all analytic on the closure of O and given on 4D. 8/dn denotes
the normal derivative of ¢ and 9/9s its tangential derivative.

In [1] it was pointed out that if the equation of 9D is written in the form Z = w(2),
then

3 d

7 4
om_ W@)7d
In addition, it is easy to show that

o __1 4
3 - @) d

Hence (10) can be written in the form

- 7 dy 1 AN
Re {Z.; [%(@(mm &;) + b,-(Z)(W %) + c:IJ‘} = h, 1)
where ¢ = Re f(z). If we introduce
u i dy AN
ro - | 5 ao(pdn ) +velodms) + (12

then Re F = h on 4D, so that F is the solution to a first boundary value problem. f is
now obtained by solving the nth order ordinary differential equation (12) for f.
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