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ON CIRCULARLY-POLARIZED NONLINEAR ELECTROMAGNETIC WAVES*

By M. M. CARROLL (University of California, Berkeley)

Summary. An exact solution of the nonlinear electromagnetic equations for a con-
servative nondispersive isotropic centro-symmetric dielectric is obtained, which has an
especially simple form, i.e., a harmonic, circularly-polarized plane progressive wave.
The normal incidence of such a wave at a plane interface is considered and also the
propagation of such waves in a transversely isotropic, uniformly magnetized material.

1. Introduction. The classical electromagnetic theory is obviously inadequate for the
study of the propagation of intense electromagnetic waves, such as are produced by
lasers. Instead, a theory is needed in which the constitutive equations are nonlinear.
Substitution from such nonlinear constitutive relations in Maxwell's equations gives
a quasi-linear system of partial differential equations, which must be hyperbolic if electro-
magnetic waves are to propagate. Exact analysis of this system of equations, using
the method of characteristics (see, e.g., Courant and Hilbert [1]), is rather complicated.
Broer [2] obtained an exact solution for the reflection of a linearly-polarized wave incident
normally, from vacuum, on the plane interface of a half-space occupied by a nondispersive
isotropic nonlinear dielectric. An approximate theory, based on an assumption of small
nonlinearity, has been developed extensively by Bloembergen and his co-workers. This
theory, which applies also to dispersive and to anisotropic materials, is presented and
relevant papers are reprinted in [3].

In the present paper an exact steady-state solution is obtained, which is valid for
any conservative nondispersive isotropic centro-symmetric dielectric and which has
an especially simple form, i.e., a harmonic circularly-polarized plane progressive wave.
The phase velocity depends on the amplitude of the wave. The reflection and transmission
of such a wave, incident normally, from vacuum, on the plane interface of a dielectric
half-space, is considered. It is shown also that such waves can propagate in the sym-
metry direction of any conservative, transversely isotropic, centro-symmetric dielectric,
to which a uniform static magnetic field may be applied in the symmetry direction.

2. Constitutive Equations. The electric vector E and the magnetic intensity vector
H in a dielectric are assumed to be functions of the electric displacement vector D and
magnetic induction vector B, thus

E = E(D, B), H = H(D,B). (2.1)
This assumption implies that the material is nondispersive. The symmetry of the material
imposes restrictions on the form of the function dependence (2.1). For a homogeneous
isotropic material possessing a center of symmetry, (2.1) has the form [4], [5]

E = a,D + a_>D X B + «,(D-B)B,

H = 0,B + &(D B)D + A(D-B)D X B,
where the constitutive functions a< and /?,• (i = 1, 2, 3) are functions of the isotropic
invariants

/, = D-D, h = BB, 7, = (D-B)2, (2.3)

^Received August, 1, 1966; revised manuscript received September 23, 1966.
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thus
<*, = , I2 1 I3), Pi — , Ii , I3). (2.4)

The constitutive equations in a vacuum, for all field strengths, are

E = D, H = B. (2.5)
For sufficiently weak fields (or for linear materials) Eqs. (2.2) have the familiar linearized
form

E = a0D, H = jSoB. (2.6)

For strong fields, however, the nonlinear terms in (2.2) must be taken into account.
It was shown in [5] that if the system is conservative, so that an electromagnetic

energy density function TF(D, B) exists, then

E _ H _ #E. (o m
E ~ dD • H ~ SB (2>7)

Since W must depend on D and B through the isotropic invariants (2.3), comparison
of (2.2) and (2.7) gives

_ 9^ _ n -«> - 2 dJi , - 0, a3 - 2 Qh ,

dW dW
A-2a£' ft = 0-

(2.8)

If the material is nonmagnetic, then the constitutive equations (2.2) have the form1

E = a,(70D, H = B. (2.9)
3. Propagation of a finite amplitude plane wave. Consider the propagation of a

finite amplitude plane wave in a conservative isotropic dielectric with constitutive equa-
tions (2.2), (2.8). A rectangular Cartesian coordinate system x is chosen, with the ar3-axis
in the direction of propagation of the wave. Components in the system x are denoted
by lower-case Latin or Greek subscripts, which take the values 1, 2, 3 and 1, 2, respec-
tively, and the usual summation convention is adopted.

Maxwell's equations, in the absence of free currents and charges, are

(3.1)
dB/dt + curl E = 0, div B = 0,

dD/dt — curl H = 0, div D = 0.

For a plane wave propagating in the ^-direction, (3.1) gives

d-B„ , dE# _ n dPa _ dtfg _ . .
dt + ta3fi dx3 ' dt dx3 ' ^

where eiik denotes the alternating symbol. Furthermore, the longitudinal components
D3 and B3 are independent of x3 and t and, for the present, initial or boundary conditions
are assumed such that

Dt = B3 = 0. (3.3)

'The constitutive equations for a nonmagnetic isotropic dielectric, which does not possess a center of
symmetry, are also of the form (2.9).
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The system of equations obtained by substitution for E and H from (2.2), (2.8) in (3.2)
leads, in general, to rather complicated analysis. It admits, however, the following
elementary solution.

Consider a circularly-polarized wave

D = d(cos sin <t>, 0), * _ tel _ (3.4)
B = b( —sin 4>, cos <f>, 0),

where d, b, k and w are real constants. The isotropic invariants (2.3) associated with
the wave (3.4) are constants

Ii = d\ It = b\ h = 0 (3.5)
and the constitutive equations become

E = «D, H = /SB, (3.6)
with

a = ai(d\ b\ 0), p = fii(d2, b2, 0). (3.7)
The field equations (3.2) are satisfied, provided

ub = lead, ud — k/3b, (3.8)
so that the ratio b/d and the propagation velocity u/k satisfy

b2/d2 = a/0, u/lc2 = a/J. (3.9)
For a nonmagnetic material, for example,

b2 = ai(d2)d2, w/k2 = <xi(d2). (3.10)

Thus, a finite amplitude circularly-polarized plane progressive wave can propagate
in any conservative nondispersive isotropic dielectric, with propagation velocity which
depends on the wave amplitude.2

4. Reflection and transmission at a plane interface. Let the region x3 < 0 be a
vacuum and the region x3 > 0 a dielectric with constitutive equations (2.2), (2.8) and
consider a monochromatic circularly-polarized wave incident normally from vacuum
on the interface x3 = 0. The electric and magnetic intensity fields associated with the
incident, reflected and transmitted waves are

E* = a'(cos<£', sin <f>', 0), H' = a'(—sin 0', cos <j> , 0),
ET = a'(— cos 4>r, sin 4>r, 0), Hr = a'(sin <f>r, cos4>r,0), (4.1)

E' — ad(cos <t>', sin <f>', 0), 11' = pb(—s'm 4>', cos</)',0),
respectively, where

4>' — co(x3 — /), cj>' = <j>(x3 -f- /), </>'== kx3 ut. (4.2)

Here the amplitude a' and the frequency « (> 0, say) of the incident wave are known,
a and /3 are defined by (3.7) and b/d and u/k (>0) are given by (3.9). The boundary
conditions at the interface x3 = 0 (continuity of the tangential components of E and H)
give

a' — a' = ad, a' + a — 0b. (4.3)

2More generally, afinite amplitude plane wave D = d(cos/(0), sin/fa), 0), B = b(—sin/(<£), cos /(<#>),
0), where /(</>) is an arbitrary function of </>, propagates without change of form in any conservative
nondispersive isotropic dielectric, with phase velocity given by (3.9).
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When Eqs. (3.9) are solved for b and k as functions of d, (4.3) is a system of two equations
in the two unknowns d and a'.3 For a nonmagnetic material, for example, d is given by

{1 + (a,W/2} rf(a,(d2))1/2 = 2a' (4.4)

and or is given by

{1 - (ai(rf2))1/2J d(ai(d2))w2 = 2a'. (4.5)

The fact that the transmitted wave is also monochromatic is surprising in a nonlinear
theory.

5. Uniformly magnetized, transversely isotropic materials. Results similar to those
obtained in Sections 3 and 4 hold in a more general situation. Consider a material which
is transversely isotropic with respect to the a^-direction, e.g., a uniaxial crystal. If
an electromagnetic energy density TF(D, B) exists, then the requirement that W be
invariant with respect to any rotation of axes about the x3-direction leads to

W = W(DaDa , BaBa , DaBa , D, , B3). (5.1)

If the material possesses a center of symmetry, then W must also be invariant with
respect to the central inversion transformation, for which (since D is an absolute vector
and B is an axial vector)

Di ,Bi—* — Z), , Bi . (5.2)
Thus

W = W(DaDa , BaBa , B3 , (DaBa)\ D\ , D3DaBa),

W = W{h ,7, ,/< ,7. ,78), (5.3)
where 7, , I2 and I3 are given by (2.3) and

I* = B3 , 7, = Dl , h = D3DaBa . (5.4)
Then, from (2.7), the constitutive equations have the form

jp o dW n o dW n R r i (o n _l n r n R ,
Et = 2 dh Di + 2 dh A ' ' + \2 eh D3 + dh * T3' + eu DsBaSa<' „

(5.5)

H< ~ dl2 i+ dl3 DiB'Di + dh <97e D3D°Sai •

where 5,-,- denotes the Kronecker delta.
Consider the propagation of a circularly-polarized wave of the form (3.4) in such

a material and suppose that uniform static electric and magnetic fields are also applied
in the ^-direction, so that the equations (3.4) become

D = (dcos<Msin0, D), <t> = kx3-ut. (5.6)
B = (— b sin <t>, b coscp, ®),

3Of course, the requirements of existence and uniqueness of solution impose restrictions on the form of
the constitutive functions ai ftnd /Si.
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The invariants associated with the fields (5.6) are constants

h = d~ + D2, I4 = ffi,

I2 = b2 + (B2, /. = ©2, (5.7)

/3 = £>2(B2, I6 = 0.

Thus, whenever 3D = 0, the constitutive equations (5.5) have the form

E\ = */), , //, = 0B, + yS3i , (5.8)

where a, |3 and y are constants

_dW dW dW
s ~ 577 ■ '-mT' (5-9)

Consequently, results similar to those obtained previously hold also in the case of
propagation in the symmetry direction of a transversely isotropic dielectric, possessing
a center of symmetry, to which a uniform static magnetic field may also be applied in
the symmetry direction. Similar results are not obtained, in general, in the case of an
applied uniform static electric field.4

Acknowledgment. The results reported here were obtained in the course of research
supported by the U. S. Office of Naval Research under Contract Nonr 222(69) with
the University of California, Berkeley.

References
[1] R. Courant and D. Hilbert, Methods of mathematical physics, Vol. II, Interscience, New York, 1962
[2] L. J. F. Broer, Physics Letters 4, 65 (1963)
[3] N. Bloembergen, Nonlinear optics, W. A. Benjamin Inc., New York, 1965
[4] A. C. Pipkin and R. S. Rivlin, J. Math. Phys. 1, 542 (1960)
[5] M. M. Carroll and R. S. Rivlin, Quart. Appl. Math. 23, 365 (1966)

'Roughly speaking, a material which possesses a center of symmetry retains its centro-symmetric
property in the presence of a uniform static magnetic field, but not in the presence of a uniform static
electric field.


