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SHEAR WAVES IN FINITE ELASTIC STRAIN*
By J. D. ACHENBACH (Northwestern University)

1. Introduction. In this note the analytical tools of the theory of propagating
surfaces of discontinuity are used to construct the solution of a transient wave propaga-
tion problem. We consider wave motion in pure shear generated by the application
of a monotonically increasing transverse particle velocity at the surface of a half-space
that is initially undisturbed. The material of the half-space is nonlinear elastic, incom-
pressible and isotropic.

The expression for the displacement which is obtained by considering propagating
discontinuities shows that the magnitude of the acceleration discontinuity at the wave
front remains constant in time. In another study of the present problem by means of
the method of characteristics it was, however, pointed out by Chu [1] that the formation
of shock waves should not be ruled out, because a preceding disturbance may be over-
taken by subsequent disturbances. The latter effect, which for the present boundary
conditions may occur if the stress-deformation relation is convex with respect to the
deformation gradient axis, is not accounted for in studies of propagating discontinuities.
The solution that is presented here is valid at all times if the stress-deformation relation
is concave, and it is valid till the time of shock formation if the latter relation is convex.

2. Governing equations. For an elastic material that is isotropic and incompressible
the constitutive equation is of the form, [2, Eq. (6.6)],

'(dW , , <?tf\ dWl . m*" - 2Ltar+ '■ ti-)>•> ~ irA ~pt" ■ (1>
In Eq. (1), W(Ii , 12) is the strain energy function, and p is an arbitrary hydrostatic
pressure. The strain-invariants and I2 are defined as

h = g<i , h = ~ Qa9/.■) (2a, b)
where

Qa = (dxjdXm) (dXj/dX„). (3)

Consider a half-space X2 > 0 that is initially undisturbed. Let a translational motion
in the Xx direction be imparted to the half-space by application of a spatially uniform,
but time-dependent particle velocity v(t). The surface of the half-space is not allowed
to move in the X2 direction. As pointed out by Chu [1], the displacement field for t > 0
may be described by

xx = Xi + \(X2 , t), x2 = X2 , x3 = X3 . (4a, b, c)

Substitution of (4a, b, c) in Eqs. (3) and (2a, b) yields for this particular deformation

/, = u = 3 + r (5)
in which

F = gl2 = d\(X2 , t)/dX2 . (6)
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The shear stress <r12 , henceforth denoted by a , is now obtained from Eq. (1) as

<r = <?i2 — 2 {{dW/dh) + {dW/dh))F. (7)
By assuming that W is a polynomial function of the strain invariants 11 and 12 , it
follows, in view of Eq. (5), that dW/dl x and dW/dh are functions of F2 only. The
stress-deformation relation (7) may then be represented by the expansion

a = F it (8)
i=0

where A, are constants.
The relevant equation of motion becomes simply

p{d\/df) = da/dX2 . (9)

We assume that the particle velocity at X2 = 0 is applied gradually, such that in a
Maclaurin expansion the first term vanishes, i.e.,

(10)

It is assumed that dv/dt > 0 at all times.
3. Series solution. The form of the boundary condition (10) suggests that propagat-

ing acceleration discontinuities as well as higher order discontinuities will be generated
in the half-space. It is easy to show [3], [4] that transverse acceleration waves and
transverse waves of higher orders, if considered separately as isolated discontinuities
propagating into a previously undisturbed medium, move with velocities

Co = (.A0/P)w2 (11)

where A0 is defined by (8). Since none of the conceivably generated discontinuities can
move separately with a velocity larger than c0 it can be stated, with a qualification, that
the wave front of the total disturbance, which is generated at time t = 0 at J2 = 0
by application of (10), also propagates with velocity c0 . The qualification is that the
statement is correct if subsequent disturbances propagate with velocities smaller than c0.
If such subsequent disturbances overtake the wave front (shock formation) at time t*,
the statement is correct for t < t*.

Since the material is undisturbed until the wave front arrives, we seek the displace-
ment at an arbitrary position X2 as a Taylor's expansion about the time of arrival of
the wave front. Using a familiar notation for discontinuities, we write for fixed X2
and for t > X2/c0 :

HX2 ,t)= i-At- X2/co)n[dn\/dn. (12)
n-2 n !

Basic to the study of the magnitudes of propagating discontinuities is the kinematical
condition of compatibility. For a function f(X2 , t) which is discontinuous and has
discontinuous derivatives across a surface that moves in the X2 direction with velocity
c0, this condition takes the form

(d/dt)[j] = [df/dt] + c0[df/dX2]. (13)
By applying (13) to the derivatives dn~1<x/dtn~l and d"\/dt" for n > 1, we obtain
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dt [PHSMsSr-L <">
a r^i _ r§!!^i _l r*zi ^ «dt L dfJ L dt"+1} + CoLar J' ( )

By employing (8) we obtain the following relation between discontinuities at the
wave front

[dV/df] = A0[dnF/dtn] + PJt) (16)

where

Pn(t) = [|^{f £ (17)

Another relation between discontinuities at the wave front is obtained from the equa-
tion of motion (9)

[dn<r/dX2 dtn~l] = p[dn+lX/dtn+1]. (18)

We now form the sum (16) + c0 (18), where c0 is defined by (11). By employing the
relations (14) and (15) this sum reduces to (for n > 2):

<i9>

For an initially undisturbed material Pn(t) does not contain discontinuities in time
derivatives of F of orders higher than n — 2. By employing the kinematic condition
of compatibility and the equation of motion, (d/dt)[dn~1<r/dtn~l] can be eliminated
from (19), and we obtain

The inhomogeneous differential equation (20) recursively yields the magnitudes of
discontinuities (n > 2):

[S] -5hf.'& KS" i /.' p-w * +<21)
where the are defined by (10). The coefficients of the Taylor expansion (12) are
obtained by replacing t by X2/c0 in Eq. (21). The first three coefficients are

[£l - * •
[$] =
[0] =

(22)

v2 + 3(Ad/A&X, , (23)

t>3 + \%{Ariv2/Atlcl)X2 + 27(Ay,/Aid)XI . (24)

It is noted that [d2X/d/2] remains constant, while the other coefficients are functions
of the distance from the free surface. The validity of (12) is discussed in the next section.
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4. Comparison with solution by method of characteristics. By employing the
method of characteristics the solution of the problem governed by Eqs. (8-10) was
obtained by Chu [1] in the following form

a\(Z2 , t)/dt = v(a) (25)

[' c.CF2) dF = -v(a) (26)
Jo

where v(t) = d\(0, t)/d t is defined by Eq. (10). In Eq. (26):

(27)

The characteristic variable a is defined by

da = 0 along dX2/dt = c,(F2). (28)

From Eq. (26) it is noted that c. is a function of a, and since a is constant along a char-
acteristic, it then follows from (28) that the characteristics are straight lines. If the
characteristics are labeled such that a = / at X2 = 0, Eq. (28) can be integrated, to yield

X2=c.m~a). (29)
To obtain an explicit solution for d\(X2, t)/dt in terms of X2 and t, c.(a) must be solved
from (26), after which a must be expressed in terms of X2 and t by using Eq. (29).
1t is apparent that it is, in general, not possible to obtain a simple closed-form expression
for a(X2 , t). It appears that here we must also resort to a series expansion. At X2 a
Taylor expansion of v(a) about a = 0 (the wave front) is written as

v(a) = ±^{t-X2/c,( 0)rg! (30)

By employing the chain-rule of differentiation, where d'a/dt' is obtained from (29),
(26) and (27), the coefficients dnv/dtn (a = 0) are obtained as functions of X2 . It can
be checked that the coefficients are identical to those obtained in a much less cumbersome
manner from Eq. (21).

In the discussion following Eq. (29) it was tacitly assumed that (29) can be solved
for a in terms of X2 and t. As pointed out, however, by Chu [1], such a solution is possible
only if there is no positive Ar2 for which

A2 = c;/(dc,/da). (31)

It is clear that (31) can be satisfied only if dc./da > 0, i.e., if a characteristic for a > a*
intersects the characteristic at a = a*, and a preceding disturbance is overtaken by a
subsequent disturbance. From (26) we obtain

dc, _ dc, „ dF _F_ dv_ dc,
da ~ d(F2) lt da " 2 C,(a) da d(F2)' ^

Thus for a monotonically increasing particle velocity at X2 = 0, i.e., dv(a)/da > 0,
we can have shock formation if dc,(F2)/dF2 > 0 (convex stress-deformation curve).
The Taylor expansions (12) and (30) are then valid only up to the time of shock forma-
tion, where an increasing number of terms must be used as this time is approached.
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For dc.(F2)/dF2 < 0 (concave stress-deformation curve) the equality (32) can never
be satisfied for a monotonically increasing surface particle velocity, and the expansions
(12) and (30) are valid at all times.

The method presented here can also be used if the material is viscoelastic [5].
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