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EQUATIONS EQUIVALENT TO A FIRST ORDER
EQUATION UNDER DIFFERENTIATION*

By S. E. JONES and W. F. AMES (University of Delaware)

1. Introduction. In this note we discuss some solutions of the quasilinear second
order partial differential equation

utt - {FJFt)\xx + (FJF2„)(F„ut - F„ux) + (l/Fl)(FtF, - FVFX) = 0. (1.1)
For this equation and throughout the sequel, subscripts shall denote differentiation with
respect to the indicated variable. We assume that all solutions obtained have sufficient
differentiability conditions imposed on them. Equation (1.1) is obtained by differentia-
tion of the nonlinear first order equation

F(x, t,u,p, q) = 0 (1.2)

where p = ux , q = u, . Equations of the form (1.1) arise in many areas of application.
Some of these are discussed in Ames [1].

2. Basic results. We merely remark that if U satisfies (1.2) then, whenever U
is twice differentiable, U satisfies (1.1). The following example will serve to introduce
the method.

Example. Suppose that in (1.1) we set

(FJF,)2 = <f>\u) (2.1)
where <j> is a twice differentiable function. (2.1) leads to the two equations

F„ + <j>(u)Fa = 0 (2.2)

and
Fv - 4>(u)F, = 0. (2.3)

The method will become apparent if the second of these two equations is considered.
(2.3) is a first order partial differential equation for F. Assume that F = F(u, p, q).
Then by Lagrange's Method

F = q + 4>(u)p (2.4)

is a solution to (2.3). The determination of (1.1) can now be completed with (2.4). This is

iitl — 4>2(u)uix — 4>(u)4>'(u)ul + <t>'(u)uxu, = 0, (2.5)

which can be written

u,t - [4>\u)ux]z + <t>'(u)uz(u, + 4>(u)ux) = 0. (2.6)

Integrating F = 0 in (2.4), we obtain
u = G(x — t<f>(ii)) (2.7)
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as a solution for arbitrary, G. By the remark at the beginning of this section, (2.7) is a
solution of (2.6). Also, this means that (2.7) is a solution of

u„ - [<t>2(u)ux]x = 0. (2.8)

Approaching (2.2) in the same way as (2.3), it is seen that

u = H(x + t<t>(u)) (2.9)

is a solution to (2.8) for arbitrary H.
3. An application. Tomotika and Tamada [2] and Tamada [3] have considered the

equation

(ku)tt = KM2]** (3.1)
in connection with the nearly uniform transonic flow of a real gas obeying the adiabatic
law, k = (y + l)/2, where y is the ratio of the specific heats. Tomotika and Tamada
have investigated (3.1) by making several "ad hoc" assumptions about the form of the
solution. (3.1) is a special case of (2.8). Without loss of generality, take k — 1. Then,

<t>2(u)ux = (u)x = 2 uux (3.2)

will determine 4>. Now, by (2.7) and (2.9) we have

u = G(x - t(2u)in) (3.3)

and

u = H(x + t(2u)W2) (3.4)

as solutions to (3.1).
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