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—NOTES—

A SOLUTION OF VAN DER POL'S DIFFERENTIAL EQUATION*

By ZEE SHEN (National Taiwan University)

The object of the present note is to form an elliptic function of the second order:

x = p(t | 2«i , 2«3),

wi being real and co3 purely imaginary, which satisfies the well-known differential equa-
tion of Van der Pol:

x" + /i(x2 — l)x' + kx = 0, (' = d/dt) (1)

under the initial condition that x — x0 when t — t0 .
Substituting in (1) the following relations with the usual notations [1] in the theory of

elliptic functions:

x = p(t | 2<o, , 2cj3), (p'¥ = 4p3 - g2p - g3 , p" = 6&2 - hg2 , (' = d/dt)

we get

6g>2 - ?{72 + m(&>2 - 1)(4^?3 - g2p - g3)W2 + K2p = 0,

or, by clearing off the radical,

4mV — (8 + g2)n2p5 — (36 + ^'g3)p* + {(4 + 2g2)iX2 — 12/c2} §?3

+ (602 + 1\ig3 — Kl)p2 — (n2 — *)g2p — p g3 — \g\ = 0. (2)

Next, for the purpose of settling the fundamental periods 2«, , 2co3 , let us take

-V9i - \gl , (3)
then from (2) and (3), we obtain

4mV ~ (8 + - (36 - \g\)^ + {(4 + 2g,V ~ 12k2 }p2
— (k* — 6 g2 + hg\)@ — (m2 — n2)g2 = 0, (4)

or, by the substitution of the initial condition,

x0(x20 — 2)g\ + 24(^0 + 6*2 — lv(x2o ~ l)2}^

— 144 [xl + §/c2Xo + tzkXo — in2x o(xo — l)2} = 0. (5)

In the present case, both g2 and g3 must be real; besides, g3 must also be negative.
Now, we have the expressions:

(\4 ( 1 00 3 2n

where q will be later seen a positive quantity less than 1.
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If q is approximately greater than (505)_1/2, then —g3> 0 and (3) holds. If

\x0 + — i^(xl — l)2}2 + x0(xl — 2){xo + IkxI + ttK*xo — hy?xl(xl — l)2} ^ 0,
we see by (5) that g2 is real. In the case that both n and k are comparatively smaller
than x0 , we see that the condition is satisfied, for

*o + xt(xl - 2) = xl(xl - l)2 ^ 0.
Under the above restrictions, we can thus calculate a), and w3 with the values of

g2 and g3 .
By solving the three equations:

g-i — — 4(eie2 + e2e3 + e3e^),

g3 — 4eie2e3 ,

0 = ex + e2 + e3

we obtain a set of real quantities e,, e2, e3 such that > e2 > e3, if 0 < g2 < (16/27)//;
consequently

k2 = (e2 - e3)/(ei - e3), k'2 = (e, - e2)/(e, - e3).

Finally we can compute K, K', co, , w3 by the formulae:

K = (t/2)F(J, §; 1; k2), K' = (t/2)F{\, h 1; k'2),
CO! = K(et - e3)~1/2, u3 = i'K'(e, - e3)~,/2.

q = exp (w3irt7«i) = exp (—KV/K), which is real and less than 1.
Various properties of the solutions of (1) usually discussed can be derived directly

from the explicit expression of the solution we have obtained, namely

x = p(t | , 2oj3)

= — — + (——) cosec2 7rt> — 2(—) n9- 2n cos 2nrv
C0[ \2aj1/ \Ui/ „.i 1 — q

where

nq2"
q2n

Consider, for example, the path on the phase plane. Now

y = x' = | 2w, , 2w3), (' = d/dt)

and the equation of the path runs as follows,

y2 = 4x - g2x + (1/4^2)g\ = 4(z - c,)(x - e2)(x - e3).

Since

«i + e2 + e3 = 0,

ei > e2 > e3 ,

e,e2e3 = -(1/4n')gl < 0,



1967] NOTES 301

we find easily

e3 <0, ex > e2 > 0;

the ordinates are then imaginary for x < e3 , e2 < x < ex . Hence we see that there
exists always, and evidently only, one cycle on the phase plane for each solution under
consideration as shown in the figure.
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