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1. Introduction. In 1954, Ericksen and Rivlin [1] formulated the theory of finite
deformations of transversely isotropic materials. Certain problems were solved by them
assuming the materials to possess rectilinear aeolotropy. Following this Green and Adkins
[2] added a few more results to the above set of solutions and recently Huilgol [3] added
a further one when he showed that the deformation of Singh and Pipkin [4] was possible
in transversely isotropic materials as well. This seems to cover the total list of static
deformations.

The present paper deals with the dynamic problem of axially symmetric oscillations
of an infinitely long cylindrical circular tube of incompressible material which is curvi-
linearly transverse-isotropic. The anisotropy, when defined along the axis, has been
treated by the author [5]. Here, the anisotropy is assumed to exist in the radial direction.
In Sec. 2, the equations governing the motion are described and Sec. 3 treats the static
inflation of a cylindrical tube. Though this problem has been considered by Green and
Adkins [2], the results are derived afresh, since the present treatment differs from that
of [2] and also because use is made of Truesdell’s theorem on quasi-equilibrated motions
[11], [12] in Sec. 4. The above theorem requires that the static deformation be considered
in material and spatial co-ordinates and not convected co-ordinates.

In Sec. 4, the differential equation governing the motion of the cylindrical tube is
derived and is reduced to a form identical to that of [6], [7] for isotropic materials.
Certain restrictions, suggested by the treatment in Sec. 4, on the strain energy functions
are also noted.

2. Governing equations. The constitutive equation for a transversely isotropic
elastic material is [1]:

f o mat _‘3_?_—1-'__‘_92-‘ _‘Ei‘_ai_—li -1 ipk b
v; = 175i+2{61 )% 6IIC’+6I'hh’ +GII' [(€)'shs + (€ )ish ]h} 2.1

In (1.1), t is the symmetrical stress tensor, p the hydrostatic pressure, = = 2(I, I1, I, IT')
is the strain energy functions, and’

€)' =G 2. 2.2
Also, ¢ is defined as the inverse of ¢ and
B = H' . (2.3)

X° is the material co-ordinate system with the metric tensor G., and z° is the spatial
co-ordinate system with the metric tensor g;; . Now

I= (C-l)“' y (24)
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174 . defines the partial derivative dz¢/dX= in (2.2) and (2.3).
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II = [P — €)Y, (2.5)
I’ = g,;h'h, (2.6
and II’ = R, 2.7

Further H* defines the direction of the anisotropic director. In [1], this director was
considered to lie along the z-axis of the co-ordinate system for some solutions and other
directions for a few more. In this note, the director H” is chosen so that, in the material
co-ordinate system (R, 6, Z),

H® =1, H®=H’=0. (2.8)
The equations of motion in the absence of body forces are [1]
i, = pdv/de. 2.9

Now Truesdell [11], [12] has shown that if T, is the equilibrium stress corresponding
to a static deformation, then the stress due to a quasi-equilibrated motion causing the
same deformation is given by

T =T, — p¢l, (2.10)

where { is a single valued acceleration potential. He has determined the acceleration
potential for a cylindrical tube and the deformation field specified in Eq. (14) of [11]
is exactly that assumed in the present problem as well. Thus, Sec. 3 is directed towards
determining T, .
3. Inflation of a hollow cylindrical tube. Consider an infinitely long cylindrical tube
of radii R, and R, (R; > R,), made of incompressible homogeneous material with a
radial transverse-isotropy. Denote the displacement field by
r = r(R), 6=06, z=12, 3.1)

where (R, 6, Z) and (r, 6, z) are respectively the material and spatial co-ordinates.
The strain measure is:

(dr/dR)> 0 0
He™H |l = Y 1/R* 0| (3.2)
0 0 1
The incompressibility condition reads .
" —nrn’=R"-R’ ' 3.3)

where 7, is the inner radius after deformation.
Denoting H* = 1, H® = H? = 0, (2.3) yields:

k" =R/r, R =h=0. (3.4
The constitutive equation (2.1) yields the stresses:
. o o3\R' _,9zr 0% R
Lo=-—p+ 2(01 + al’) A T2t iar 35
o - _ oz’ o0z R
Co= =P+ 25T R~ 2517 3.6)
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', = —-p+2_~+ 2 e 3.7

From the equilibrium equations, in the absence of body forces,

r, = - f rl ", — £ dr 3.8)

__[2]R (az ) ” (@ ) ) R‘]

--J: [ﬁ st tor o) ~m Gr tam) a4 69
This determines the stress field required to solve the problem in Sec. 4 and the other two
follow from substitution into (3.6) and (3.7).

As Knowles [6] remarked, (3.7) implies that at infinity a normal force is required
over the ends of the cylinder. Finally, the invariants are:

I=1I=1+ R/ +r*/R?, (3.10)
I = R2/7‘2, (3.11)
I’ = R'/r'. (3.12)

4, Oscillatory motion. If it is now assumed that, under pressures of P,(¢) and P,({) in
the inner and outer radii respectively and certain initial conditions, the tube oscillates
radially, then

r=rR,1), =0, z2=17. “.1)
Thus, using Truesdell’s theorem [11], [12], the acceleration potential is:
—¢ = (i) logr + rn'H2/2r%. 4.2)

Hence, through (2.10) and (4.2), the radial stress is
= pltiy + #°) logr + r""*/2r°] + ¢(9)

- /2 [(3? + aII)( - rl?) +E (32 EFid )] dr.  (43)

Following the procedure in [12] and evaluating the stresses at » = r, and r = r; in (4.3)
and subtracting the second from the first, and using

z =nr{)/R., u=1r/R, (4.9

v =R}/R*—1>0, 4.5)

2 (" 14 u a3 1 ( 262)}
@ = r= fm,.,,(,m{ e (aI + 611) t7a = \er Toair/ ¢ “6

the differential equation governing the motion is:

r log (1 + %3>x + [log (1 + ;%) + pe ]x + f(z,v) = P—(t)ﬁ—w 4.7

Now define

2
Zo(u) = R (¢ PN § B R § ) PN ERPRIRYAS R Y e Y (4.8
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Then
dzy _ 2;[2_ (@ 6_2_)_(@ Zﬂ)]. .
d = e @ @ VGt tam) T er taarr (4.9)

Thus
_[7 1 d2u) ‘
f@ ) = >/;7+:')/(1+1) u—1 du du, (4.10)

which is the form derived by Knowles [6], [7].
Next, define
F(z,v) = f EfE, ) dE = 3(@° — 1) (w — 1)7Zo() du,  (4.11)
1 (y+z2)/(y+1)

and thus (4.7) will assume forms identical to Eq. (4.2) of [6] and Eq. (12) of [7] respectively
under the respective conditions therein. Knowles [6], [7] has solved certain problems
under the assumption, which was proposed in [13], [14] and verified experimentally by
Rivlin and Saunders [15], that dZ,/du has the same sign as (v — 1) for v > 0. This
hypothesis is adopted here. An examination of (4.9) shows that dZ,/du will have the
same sign as (u — 1) provided

N2 a_z_) > .
@ (aI Tl e = 0 (4.12)
and
.. 1 a9z 2 92
el = > g
(“) 1 - U (61/ + u aII/)I-n,u'-([')- = 0. (4.13)

The first condition arises when torsion of a radially transverse-isotropic cylinder is
examined with r = R, 8§ = 6,2 = Z and H*® = 1, H® = H? = 0. (4.12) implies that
the shear modulus is positive, while (4.12) is a new restriction. The latter holds whenever,

@ u>1 and g% +§% <o, (4.14)
9T . 2 93
) 0<u<l and 55 +282 5, (4.15)

it being always assumed that Z(1) = 0.

Below, we discuss briefly the form Z,(u) has to assume so that periodic solutions
may exist. Following Guo Zhong-Heng and Solecki [8], periodic solutions to free oscilla-
tions exist [6] if:

(a) Asu— o, Zy(u) — o« arbitrarily, and (4.16)
() Asu—0, Zou)~Ku™* K>0 k=1 (4.17)
For the case of forced oscillations due to a pressure impulse [7], the restrictions are [8]:
(a) Asu— o, Zyu) ~Mu", M >0, m>1,and (4.18)
(b) Asu—0, Z,u)~Nu", N>0, n =1 (4.19)

Since Zo(u) # Zo(1/u), (4.17) does not reduce to the conditions of Sec. 4 of [6].
This is an interesting deviation from the isotropic case.
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Finally, for the calculation of the period of oscillation, the reader is referred to [6],
[7] for the general formulae corresponding to the case of free oscillations and pressure
impulse.

5. Concluding remarks. This paper has shown that oscillations in curvilinearly
aeolotropic materials can be determined in a manner analogous to that of the isotropic
theory. Extensions to the problems connected with the sphere [8], [9], [10] are under
investigation and will be reported elsewhere.

Unlike the isotropic theory, the transversely isotropic theory does not possess an
approximation analogous to that of the Mooney material. Despite Blackburn’s work
[16], which is in a spirit totally separate from that of [1], the author believes that an
approximate theory backed by experiment is essential before problems of the type con-
sidered in [6], [7], [8] can be solved.

In passing it may be seen that if the tube was initially everted, then (3.3) reads

7'2 hand rlz = R12 - IB2 (5.1)
and r, denotes the external radius of the everted tube. In (3.4) we have
h" = —R/r, B =h =0. 5.2)

but the stresses (3.5)-(3.9) are unchanged. In Sec. 4, { is unaltered, but under the substitu-
tion (4.4)-(4.5), the lower limit in the integral f(z, ¥) changes to (z* — v)/(v + 1).
The differential equation (4.7) for the external radius r, becomes

o tog (1 = L)s + I:log (1-2)+ =2 7]@’ + i@,y = DA=P0O

x %Psz
and with F(z, v¥) modified accordingly, an analysis similar to the rest of Sec. 4 follows.
Further it may be noted that results can also be obtained if the initial anisotropy
is in the tangential direction. Thus, choosing H* = H? = 0, H® = 1/R, and using
(4.1) ¢! is unchanged, but

I = /R, (5.4)
and II’ = r'/R*. (5.5)

Also, 32/01’ and 9Z/dIl’ drop out of the stress ¢’, and, while the equation (4.7)
remains the same, f(x, v) involves d2/91 and 4Z/9II only. But, F(z, v) cannot be ex-
pressed in terms of Z,(u).
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