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ON THE LOW FREQUENCY ACOUSTICAL SCATTERING OF A PLANE
WAVE FROM A SOFT SPINDLE AT NOSE-ON INCIDENCE*

By ERGUN AR (University of Michigan)

1. Introduction. By means of a recently developed method it is now possible to solve
iteratively the Dirichlet Problem [3], and the Neumann Problem [1] for the scalar
Helmholtz equation (V2 + k2)<f> = 0 in the regions exterior to a nonseparable body
imbedded in the Euclidean 3-space; provided k, the complex wave number, is sufficiently
small, and the solution of the Laplace's equation can be obtained for the body in question.

In what follows we shall consider one such body, namely, a spindle (a football shaped
object).

We shall first obtain the potential Dirichlet Green's function for the spindle. Then
by means of the above mentioned method we shall express, in the form of integrals,
the scalar scattered field of a plane wave which is incident nose-on upon the spindle.

2. The Geometry of the Problem. The bispherical coordinate system (a,&,<£), which
is suitable for this problem, is given by

csinh/3 c sin a sin </> c sin a — cos 6^ —    0 —-   i £ l j
cosh fi — cos a ' cosh 0 — cos a ' cosh 0 — cos a '

hp = ha = —. , C , — — c sin a  c is a positive real constant,
cosh p — cos a cosh j3 — cos a

where

and similarly for hp and h#
In these coordinates

VV = 73 " a A , l a I, . dA h„ dV
"to \ hp j + ~ T~ I hp sm a — I -j—— 772.3/3 \ 6/3/ sm a. da \ daJ sm a dcj> _ (2.2)

The range of the variables are — °=> < /3 < «>,0<a<x, 0 < <t> < 2ir.
The necessary and sufficient conditions for the separability of the Laplace (and

Helmholtz) equations in various coordinate systems are given by Moon and Spencer
[5]. Using their criteria for separation, we see that the Laplace equation is not simply
separable in bispherical coordinates but is partially separable (whereas the Helmholtz
equation is nonseparable in either sense).

In the bispherical coordinates the surface a = (const.) is a surface formed by
rotating about the x-axis that part of the circle, in the x-z plane, of a radius c cosec a!
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with center x — 0, x = c cot . This surface of revolution is called a spindle. All the
surfaces of constant a go through two points x = ±c (y = z = 0); and at these points
/3 = ± eo respectively. The surface a = 0 is the z-axis for x > c plus the sphere at
infinity; the surface a — x/2 is the sphere of radius c with center at the origin; and the
surface a = ir is the z-axis for x < c. The exterior region we are concerned with is >
a > 0, co >/3> — co, 2x > <£ > 0.

3. The Potential Dirichlet Green's function for the spindle. The Jacobian of the
transformation (2.1) is

d(x, y, z) c3 sin a
d(a, j3, 4>) (cosh p — cos a) (3.1)

Also

d(x, y, z)
S(x — x0) 8(y — y0) 8(z - z0) = 8(a - ao) 5(/3 - /So) Sfa - <t>o). (3.2)1d(a, ft <t>)
Therefore the potential Green's function satisfies the equation

V2(?„(«, ft <t>) «o , ft , <t>o) = -4tt (C°Shj TC0Sa)3 • S(a - a0) 6(fi - ft) 8(<t> - <fo) (3.3)c sin a

where (a0 , ft , <f>o) and (a, /3, <t>) denote the source and the field points respectively,
and V2 in bispherical coordinates is given by (2.2). The solution of Eq. (3.3) which
vanishes on the boundary and satisfies the regularity condition rG0 < 00, r2(dG0/dr) < »,
as r —» 0°, can be found to be

Co ft, ft 4>] So , ft , <t>o) = £ exp [m(0 - tf>0)](cosh 0 - I)172 (cosh ft - £0)1/2

/.
, 1 exp [zV [go - ft] Tjiv + 1/2 — m)

P" -,„(£,) sin (» + m - 1/2)* r(w + 1/2 + m)

. -,„(£.) - Po-./,(«)p:-./.(-{0]p:*< &, (3 4)
}Pi 1—1/2© [P.»-l/2( fc)Pi>-l/2&) P<»-1/2(£o)P..— 1/2( £l)]i { ^ {o I

where £ = cos a.
With the substitution s = iv — § the above representation for the Dirichlet Green's

function is written as

G0 = (cosh /3 — cos a),/2(cosh /30 — cos a0)I/2
zc

f~-1/2 , exp f(« + 1/2) 1/3 - ftll x r(s + 1 - m)■ L-,„ * italT  S " cos m(* - *>> r(. 4- 1 + „)

P"(— COS a)P1(cosdo) — —pi, C0S PT(cos <*)P"(cos «,j \ , a, > a > a0 . (3.5)^,(COS«0 J

We now make the following observations in connection with the nature of the poles
of the integrand:

'Equality is understood in the sense of distributions. We shall assume the usual 5-function formalism
6uch as substitution, integration by parts, etc., and for proofs refer to e.g., Gelfond and Schilow [2],
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(1) First we note that since the behavior of P™( — cos a)P™(cos a0) is the same as
P™( —cos a1)/P™(cos aO .p?(cos a)P™(cos a0) for large |s|. Therefore, we only need to
study the integrand in the half plane Re s < — 3.

(2) (l/sinsir)(r(s + 1 — m)/(r(s + 1 + m)) has m poles of order two at s = —1, —2,
• • • , — m and simple poles at s = — m — n, n = 1, 2, 3, • • • , .

(3) In the s-plane P™(cos a) is an entire function. Zeros of P™ in the s-plane are all
real and distinct.2

(4) In the s-plane, the zeros of P"(cos a), P"(cos 8) are different for a ^ /9; the
zeros of P™(—cos a), P"(cos a) are different.

(5) Recall that in constructing the Green's function in the variable a over the range
<*1 > a > a0 , we used the proper combination of two functions.

= p:(-©p:&) = -p:(0p:(-f,),
<t>2 = p:(&.

If s is an integer, then since

p:g) = (—i)-p-(—©, p:&) = (-i)"p:(-{,).
the Green's function G0 = 0 for all a in a, > a > 0. This means that the
factor (1/sin srr)(r(s + 1 — m)/(r(s + 1 + m) has in fact no residue contribution to
the integral and the only contribution is from the simple poles of l/P"(cos a,) at the
noninteger real values of s in the region Re s < — |.

(6) Let s — s, denote the noninteger real solutions of the equation P"(cos «i) = 0
in the region Re s < — % of the s-plane.

We can now, by means of the observations (1) through (6), write down the final
residue series for G0

Go = - (cosh p — cos a)1/2(cosh 0O — cosa0) } 23 e».(— 1)™ cos m(^> ~ <£o)
c U1-0

y exp [(s,- + 1/2) |ff - j30[] r(s,- + 1 - m) P".(-cosoh)
i sin s,7r r(s,- + 1 + m) d , D . .,{P.(cosa,)}...,.

•P-(C0S a)Pr,(cos a0)| > a > ato (3.6)

4. Dirichlet Green's function for the Helmholtz operator. We are seeking the Green's
function for the surface B of the spindle a = al satisfying

(a) (V2 + k2)Gk(p, p0) = —4tr-5[P(p, p0)], P, Po e V,
(b) Gk(pB , po) = 0, _ (4.1)
(c) the radiation condition, limr_,. \r(dGt/dr — ikGt) | = 0, uniformly in all direc-

tions, where V denotes the volume exterior to the spindle suface B, p(a, p, <f>) the field
point, p0(«0 j Po , 4>0) the source point, pB(a! , /3, <f>) a point on the surface of the spindle

SH. M. Macdonald showed [4] that for n real and m > 0, PJ" (cos a) can have no complex zeros.
He also showed that PJ (cos a), n > 0, has an infinite number of distinct real zeros and, in addition,
at most 2k complex zeros, where k is the greatest integer contained in 11. In our case m = 0, 1, 2 • • • and
we can exclude the possibility of complex zeros as can be seen from the relation P7™ (cos a) =
(r(s — to + !))/(r(s + to + !))( —1 )mP" (cos a) for integer to.
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a = a, . R(p, pa) is the distance between p and p0 . We note that

r = ((cosh p + cos a)1/2/(cosh p — cosa))I/2,

and r —» <*> if and only if a —* 0, p —» 0. With our choice of 5-function and the radiation
condition, the free space Green's function is exkR/R\ and the composition of Gh into
singular and regular parts is given by

Gk(jp, Po) = eXP^p/°)] + Uk(p, p0), (4.2)

where Uk satisfies

(V2 + k*)Uk = 0,

and the radiation condition 4.1c.
In our case the Helmholtz equation is reduced from the wave equation by assuming

the harmonic time dependence e'"'.
We now state the result [3] which will be used to generate the scattered field. If

(a) w:V->E\

(b) wtC\V)
2 dw

dr < <» as(c) |ro| < oo ,

then w(p) satisfies the integral equation

w(p) = G0(p, p')2w(p') dv' + Jg w(jpB) G0(p, pB) dcB (4.3)

where the volume element is given by

dv = dx dy dz = y' da dp d<f> = 7— 'c's"ltt—-3 da dp d<t>,
J d(a,P,4>) (cosh P — cos a)

the surface element (for the surface a = a,) by

t    c sin ~ _
rfcr — - , a .2 "P 1(cosh p — cos ai)

d/dn is the normal derivative (in the direction out of V) and is given by

d Id 1 , , . d /a a\— = —— — = — (cosh P — cos a) —• (4.4)dn ha da C 'da v '

We want to represent the regular part Uk of the Green's function using the above
Theorem. Uh is not regular at infinity. There is more than one way of making Uk regular.
Although, for example, the function e~'krUk is regular, in a particular problem like
ours the choice must be made more judiciously to simplify the resulting equations and
to enable us to carry out the integrations eventually arising in connection with the
iteration. Thus, we define

p = e-w.nUt (4.5)

and call / the "eikonal".
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5. A suitable choice for the eikonal/ (a, 3). We have

U = e~<k'Uk (5.1)

and
(V2 + k2)eikfU = 0. (5.2)

Therefore,
V\e<kfU) + kV'O = V ° (ikeik,UVj + e""V(J) + kVkfU

= eaf[l - (V/ o Vj)]k2U + eikfV2U + 2ikeikfVU ° V/ + ikemUV2f = 0

V2U + 2ikVO o V/ + ikUV'f + [1 - (V/ ° V/)]fc2f/ = 0. (5.3)
We see from (5.3) that the first natural simplification is achieved by setting

V/oV/=l. (5.4)
This is the "eikonal equation" for /.

6. Solution of the equation V / o V / = 1. In bispherical coordinates

V = - (cosh /3 — cos a)ya J~ + TTf (6-1)C (da d/3 Sin a d<£j

with (6.1), (5.4) becomes
2 / 2

da) + Q ~ (cosh 0 - cos a)2" (6'2)
We note that

cosh 8 — cos a = 2 sin 'a ^ sin (^) - 2 sinh (^) sinh (^)•

Let

then

therefore

Z — /8 + ta, 2 = /3 — ia

A = .•«/ _ idl d± = A , A ■
da dz dz ' <9/3 cte dz '

<L/Y + (i/Y = 4M.
da/ \d/3/ 50 32

The equation to be solved is

4 A.A ^ ~ ^ • i 2 / /r»\ • u232 32 4 sinh (z/2) sinh (z/2)

We want to find a solution to this equation which is regular at infinity. Assume / =
g(z) + g(z), then

2 " 2 sinh' (2/2) " ~C I(coth (z/2,)-
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Hence,

g(z) = — (c/2) coth (z/2)

j = 11coth + coth (f3 2 ZQ)} ' c > ^6'3^
From r = (cosh /3 + cos a)1/2/(cosh /3 — cos a)1/2, and (6.3) it is immediately seen that

/ = 0(r) as r —> °o (a —* 0, /S —> 0). (6.4)

Now, making use of the expansion [Wilcox (6)] for Uk, which is absolutely and uniformly
convergent outside of a sphere completely containing the spindle, we have,

= rikr ^ i"

and, with U = e~'k,Uk ,

rUk = e"' Z k ;
n-0 '

rf/t = e,t<r-/> £ £ ,
n-0 '

so that
|rC7| <<» as r-> ®. (6.5)

Also
dU

r dr
2 3 , -ikfjj , 2 3 Je'k(r n y-> /n\

= 5r Uk]=r Jr\—rh?)>
therefore,

|r2 df?/dr| < <» as r —► <» . (6.6)

From (6.5), (6.6) we see that
0 = e~ik,Uk

is regular at infinity.
We also note that V2 / = 0; therefore equation (5.3) yields

V2f7 = -2ikVU o V/. (6.7)
But

VO = \/(e~ik'Uk) = -ike-'k'UkVf + e~ik'VUk ;

therefore,

Vt7 o V/ = -ike~ik,Uk(V1 ° V/) + e-ikfVUk ° V/ = -ike~ik'Uk + e~ik'VUk o V/.

So we have

V2tf = -2(fc2£/t + o V/)e~"'. (6.8)

£/ satisfies the hypothesis of the above theorem; taking iy(p) = £7 in equation (4.3)
we have

&(3>,Po) = f dv' G0(p, p')V2U(p', p0) + J daB U(pB ,p0) faG0(p,pB) (6.9)

where V2t/ is given by (6.7) or (6.8). Substituting (6.7) into (6.9), we finally obtain
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&(p, p0) = -2ik [ dv' G0(p, p')Vj o VU(p', pn)
J v

+ J daB U(pB , po) ~G0(p, pB). (6.10)

7. Scattering of a plane wave by the spindle. We write (6.10) in the operator form

V = K o 0 + Uw (7.1)
where

K : U -> K o 0 = -2ik ^ dv G0(p, p')Vj ° VU, (7.2)

and

t/(0) = j daB U(pB , Pa) £ Goto, Pb). (7.3)

The iterates are given by

U<N) = £ ° t7"" (7-4)
n-0

or by
0W> = K o + {7<0>, N > 1. (7.5)

On the surface of the spindle a = a,

0(p. ,Po) = e-ikn"-f)Ut(pB , po);

also the sum of the scattered field XJk and the incident field U,HC vanish on the surface;
therefore (7.3) becomes

t/<°' = ~ L e"it/<a""C/ine(P«) £ G°(P< Vb) d*. (7.6)

We now take the incident field to be a plane wave propagating in the direction of the
negative z-axis, thus,

pine -.tita.fl) / ^ c sinh (3U — e , X(a, P) =  r—T , (7.7)
cosh /3 — cos a

then we may assume m — 0 in the expressions for the static Green's function

G0 — J (cosh /S — cos a)1/2(cosh /3„ — cos a0)1/2

v* exP [(s> + V2) |/3 - 0n|] P./cosa,) „ , N ^
?  am [p.< cos„,) i„„ p-(cos °)P-(C0S °')' (7'8)

Observing that d/dn = — (l/ha)(d/da) = —(l/c)(cosh /3 — cos a) (d/da) and that
P, (cos aj = 0, from (7.8) we obtain

dGo
dn = t sin a,(cosh j9 — cos a,)3/2(cosh/30 — cosa0)'/2

— -I72) ̂"^n|) ^/nVpT08^) If IP'/C0Sa)H *.,(<*»««)• (7-9)sin s,-ir (fl/f/s) jP,(cosa,)|1
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Substituting (7.7) and (7.8) into (7.9) and noting that

/, = f''d* L (cosM-W <•»■ <710>
we obtain

Ul0)(a0 , j3„) = — 2r2 sin2 a,(cosh/30 — cos ao)1

J P'j(— cos «i)

■£

sin s,7r (rf/&){K(cosa,)cfo {P'.(cos ^}«-«/'»,(cos «„)

exp [-tfc[/(«, , /3) + x(at , /3)]] exp [(g,. + 1)1/3- /3n|]
P (cosh — cos a,)3/2 ' (7'n)

where

/(«! , 0) = | c"'fc +coth (^V21)} •

*<«.,» csi"h"
cosh 0 — cos «! '

and we recall that s,- are the real zeros of P,.(cos aj, (s,- < — §).
The iterates f/w> for iV Sj 1 are given by

C/(W) = — 2t7c cfo' G0(p, p')V/(«', /3') o Vf/(iv"1)(a', 0') + C/<0> (7.12)

where

Ir *' " I" * I" ̂  L (cosh <"3>
Acknowledgment. The author is indebted to R. E. Kleinman for suggesting the

problem.
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