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SMALL FINITE DEFORMATIONS OF ELASTIC DIELECTRICS*

BY
MANOHAR SINGH**

North Carolina State University at Raleigh

1. Introduction. As in finite elasticity theory, there are certain problems in the
theory of finite deformations of elastic dielectrics which can be solved exactly by the
inverse method. The deformation and the electric field are prescribed at the outset
and it is then verified that the resulting state can be supported without mechanical
body force or distributed charge in every homogeneous, isotropic, incompressible,
elastic dielectric. Singh and Pipkin [1] have described all such possible combinations
and call them controllable states of these materials. Since these states do not require
any detailed knowledge of the form of the stored-energy function for the material,
they could be used in an experimental determination of the stored-energy function.
While there is a moderately large number of controllable states for incompressible,
dielectrics [1], Singh [2] has proved that if the dielectric considered is compressible,
then the only controllable states possible are the combinations of pure homogeneous
deformations and the uniform electric fields. For a problem in which the displacement
or the electric field, prescribed initially, are other than those in controllable states,
progress towards the solution is sometimes possible if certain specific forms of the
stored-energy function are made available.

In finite elasticity theory, the development of small but finite deformations was
consistently developed by Murnaghan [3] and later by Rivlin [4]. In the present paper
we carry out a similar investigation for elastic dielectrics. The stored-energy is assumed
to be a function of the deformation gradients and the total electric field present.
Constitutive relations relating stress, strain, electric field, and the dielectric displacement
field are suggested. The special polynomial forms of the stored-energy function of an
initially homogeneous, isotropic, elastic dielectric are developed for small finite
deformations and weak electric fields. The application of the corresponding approximate
constitutive equations is then illustrated by obtaining the solution of a problem which
cannot be solved on the basis of a completely arbitrary stored-energy function.

Certain polynomial approximations have also been considered by Toupin [5], and
Eringen [6]. No analytical solutions based on such approximations have been obtained
as far as we know. The approximations arrived at in this paper are different from those
in [5] and [6]. The analysis in this presentation assumes the total electric field rather
than polarization as the independent variable. Also, another difference is that we do
not decompose the stress, the electric field, or the dielectric displacement field into
sums of various parts. When the electrical effects are not present, it is shown that the
approximate forms of the stored-energy function reduce to the well-known strain-
energy forms of Murnaghan (3], Mooney-Rivlin materials [7], and Neo-Hookean
solids [8], in the theory of finite deformations of elastic solids.

In Secs. 2 and 3 the basic equations of the theory of elastic dielectrics are restated
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from [1]. This theory we believe is, in essence, equivalent to that formulated by Toupin
[5], [9], where the discussion of fundamental aspects is also given.

Following the scheme suggested by Rivlin [10] in finite elasticity theory, we derive
the first order and second order approximate polynomial forms of the stored-energy
function in Secs. 4-6. These special forms, although valid only for small strains and
weak electric fields, nevertheless admit arbitrary rotations. These forms are further
specialized to cover the case of classical electrostriction when rotations are also small.

In the remainder of the paper, we examine the problem of simultaneous extension—
a simple shear parallel to the axis and a simple shear about the axis—of a long circular
tube of a homogeneous, isotropic, incompressible, elastic dielectric material in the
presence of a radial electric field. Singh and Pipkin [1] have shown that if the functional
dependence of the stored-energy function is arbitrary, the deformation and the field
described above cannot together be supported without mechanical body force or charge
distribution. However, it is demonstrated in this presentation that if attention is confined
to small finite deformations and weak electric fields, then the problem can be solved.
Closed form expressions for shear functions and the surface tractions necessary to support
the prescribed combination of deformation and the electric field are determined within
the first order approximation.

Finally, we may point out that with the procedure developed, because of its simplicity,
solutions to many other problems can be obtained, but have not been included here
since the method of treatment is now made clear.

We use the familiar suffix notation, summation convention, and Cartesian coordinate
systems unless specified otherwise.

2. Continuum electrostatics. We reproduce here those basic equations of continuum
electrostatics and mechanics which are independent of the composition of the material
media that may be involved.

The macroscopic electric field E; is conservative:

Ei.i = E,".' . (2'1)

In the assumed absence of distributed charge, the dielectric displacement field D; is
solenoidal:

D.:=0. (2.2)

At the charge-free surface of a dielectric with outward unit normal =, , the tangential
component of E; and the normal component of D; are continuous:

ein(B” — E)n = 0, (D{® = Dn; = 0, (2.3)

where E” and D{” are evaluated in the outside medium, and E; and D; are evaluated
inside the dielectric.

We assume that the resultant force F'; and moment G; exerted on the material con-
tained in an arbitrary volume V, not including gravitational or inertial forces and
moments, can be expressed entirely in terms of a stress vector ¢; acting over the surface S
of the volume V, in the forms:

F; = # ¢ dS, Gg = # e;;kx;t,‘ ds. (24)
8

S

Here z; are Cartesian coordinates, and G; is the moment about the origin. The stress
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vector ¢; accounts for all electro-mechanical effects except the gravitational and
mechanical body forces which will be set equal to zero in the work to follow.
We specifically exclude surface couples and body couples.

On the basis of the assumptions (2.4), one obtains as in continuum mechanics,

t; = o;n; on the surface S, 2.5)
that the stress matrix is symmetric,
Tij = Oii, (2‘6)

and that the differential form of the equation of translational equilibrium, when
gravitational or inertial forces are neglected, is

Oii.i — 0. (2'7)

If T, represents the mechanical force per unit area applied on the boundary of the
dielectric body, then

T = (o:; — 0-{?))"; ) (208)

where the superscript zero carries the same meaning as in (2.3). In the absence of electrical
effects, at the surface of a body, one ordinarily takes the stress ¢f; in the surrounding
free space to be zero. In the present case, however, there will be a nonzero Maxwell
stress everywhere.

3. Constitutive equations. In free space,
D, = €K, , 3.1)

¢ being the physical constant for free space.
The stress ¢{; in free space is the Maxwell stress defined by

Oy = GEiEi - (e/z)EkEk Oig » (302)

Henceforth the dielectric bodies that we consider are surrounded by a charge free
medium obeying constitutive equations of the forms (3.1) and (3.2). Apparently, the
stress (3.2) satisfies (2.7) identically by virtue of (2.1), (2.2), and (3.1).

The deformation of a material dielectric body may be described by specifying
coordinates z,;(X, , X,, X;), in the deformed state, of the generic particle which initially
was located at X; in the undeformed state, all coordinates being measured with respect
to a single fixed rectangular Cartesian system z. The elastic dielectric bodies to which
we confine our discussion are those for which the stored-energy W as a function of
deformation gradients dx;/9X; and the electric field E, exists, resulting in the constitutive
relations:

oW dx; ow

T = P 5lo5./aXy) 0X, + P'aTJ‘Ei , 3.3)

and

D.‘ = GW/BE'. y (3.4)

where p is the mass density measured in the deformed configuration of the dielectric.
Constitutive relations somewhat equivalent to (3.3) and (3.4) were originally derived
by Toupin [5] through a principal of virtual work by postulating the existence of a
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stored-energy function. In a latter paper [9], a different analysis was employed yielding
the same constitutive equations. The theory suggested here in the form of relations (3.3)
and (3.4) differs formally from Toupin's theory in that we take the electric field E, ,
rather than the polarization, as the independent variable. No attempt has been made in
the present paper at the formulation of an energy principle which should yield the
relations (3.3) and (3.4).

Further restrictions upon the form of W can be obtained from the requirement that
if the dielectric body is subjected to a rigid rotation, together with the field E, , then
the force system will undergo the same rotation. Under this assumption it follows that
the stored-energy function must be expressible in the form

W = W((0x./0X,)(02./0X.), (9z,/0X )E,). (3.5)

If the medium is holohedral isotropic in its undeformed field free state, then the
stored-energy W can be further restricted to be a function of the six scalar invariants [11]:

W = W(Il )I2 ’I3 ’ I4 yIG ’ Ie)y (3.6)

where
I, = g, I, = 3lg::9ii — 9:i9:ls I; = Det |g;], (3.7)
I, =EE,, Iy = E.gE; , I, = EigugiiE;
The matrix g,; is the Finger strain tensor defined by
gii = (0x:/0X,)(0x;/0X.). (3.8)
The substitution of W given by (3.6) into the constitutive equations (3.3) and (3.4) gives

2 [(awlf Tl aW) oW oW

v = @7 Lary + 1o )os ~ or, 9 Br, o

w w
+ %:E‘E' + g_f; (9i:E:Ex + guEE;)

w ow
+ 9 (gkaiEk + g?kEiEk) + y.-kgnE’z.E,] , 3.9
ol, ol

and

o g g O )
D; = 2(614 8 + ar, 9 + oI, Jif E; . (3.10
We use g¢3; to denote the ¢j-component of the square of the matrix g.

Considering the stress and the dielectric displacement field as functions of the
deformation gradients and the electric field, Singh and Pipkin [1] formulated relations
equivalent to (3.9) and (3.10) with the difference that they did not use the expressions
for response coefficients in terms of derivatives of the stored-energy.

4. Approximate theories. Assuming the stored-energy function W in (3.6) to be
a polynomial function of its arguments, we may without loss of generality write

W= 2  Awgwli =3 =3 — VLI, “.1)

a.B.v.8. p

where A .p,a,. are constants of the material. It is readily noted from (4.1) that if the
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medium is undeformed and field free,
I1—3=Iz'_3=13—1=I4=I5=Ig=0.

Let e, , ¢, , e; denote the principal extensions at a point P of the dielectric body and
E, , E, , E, the components of the electric field referred to the principal directions of
strain at P. The invariants (3.7) then become

L=Q04e)+0+e)+0+e), L=(14e)+e) l+e)
L=Q0+e)d+e)+1+e)U+e)+ 10+ +e), L=EB, o
Is = 1+ e)’El + (1 4+ &)’E; + (1 + €)E; ,

I = 1+ e)El + (1 + e)'E; + (1 + &)°E; .

If1,—-3,1,—-3,I, — 1,1, , I, , and I, , are sufficiently small, we may approximate W,
to any desired order in the principal extensions and powers of the electric field
components, by neglecting terms above an appropriate degree in the series expansion
(4.1). Any such approximate form of W will be invariant to all rigid rotations
simultaneously of the dielectric body and the electric field. It is evident, however,
that the quality of the approximation sought will depend upon the magnitude of the
physical constants A .z, s\ -

5. First approximation. Suppose the principal extensions e; are small and the
electric field E; sufficiently weak. We may define the first approximation as one in
which we retain in W all terms involving principal extensions e; to a lower degree than
the third, the terms containing the field components E; to a degree lower than the fourth,
and the product terms only of the type e;E? . In order to obtain the form of W for such
an approximation, we will have to retain twenty-two terms in the series expansion (4.1).
However, we can arrive at the same approximation involving fewer terms by introducing
a new set of six mutually independent scalar invariants:

J1 = 11 - 3, J2 = (Ig - 3) - 2([1 - 3),
Js (Iz - 1) - (12 - 3) + (Il - 3), (5.1)
J4 = I-l ’ J5 = IS - 14 ’ Jo = Io - 2(15 _— Ig) - 14 .

In place of (4.1) we now have
W= >  Bepad 2315, (5.2)

a.B.y.8. N p

where B’s are physical constants of the material.
In view of (4.2), (5.1), and the statement of the first approximation, the following
form for the stored energy function is obtained from (5.2):

W=ao+axJ1+02J2+03Jf+an4+asJ5+aeJ1J4- (53)

To facilitate the writing, a’s are being used here to denote the B’s in (5.2). Since we
may, without loss of generality, assume vanishing stored-energy and stress in the initial
undeformed field free state, Eqs. (5.3) and (3.9) yield a;, = a, = 0, so that (5.3) reduces to

IV=ang+a3Jf+a4J4+a5J5+aeJ1J4. (5.4)

We may remark here that when electrical effects are absent, the last three terms
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in (5.4) drop out leaving behind the first approximate form of the strain-energy function
in the theory of finite elasticity [10].

Introduction of (5.4) into (3.9) and (3.10) results in the following constitutive
relations:

oi; = 2p[la: + (az + 2aa)J1 + asJ4]g.~;

- azg?; + (as — as)E.E; + as(guEE; + gilcElcEs‘)]v (5.5)
and

D; = 2[(as — as) 8;; + asgi;]E; . (5.6)

In the expression (5.4) for W if we further neglect terms of degree higher than the
second in displacement gradients du,/dX; and the field components E; , and product
terms of order higher than (du;/0X;)E; , then we obtain

W = 2a2(e;.~e,,~ - e.-,-e.«i) + 4aseie;; + a.EE; + 2a5e¢iE;E; + 2a4e:.E.E, ’ (5-7)
where e,; is the classical linear strain tensor defined by

e:; = 3(0u./0X; + du,;/0X,), (5.8)
with
u =z, — X; . 5.9

One may then designate W given by (5.7) as the stored-energy function for the classical
coupled theory of electrostriction. Both the approximate forms (5.4) and (5.7) are
valid only for small strains and weak electric fields. However, it is essential to note the
distinction between these two types of approximations. Whereas the form (5.4) admits
arbitrary rotations, only infinitesimal rotations, even rigid, are permissible in the
application of (5.7).

6. Second approximation. A second approximation can be arrived at by retaining
in the expansion (5.2) for W terms up to and including third powers in principal extensions
e; and field components E; , and product terms up to and including €3E? . To this end
the corresponding expression for W is

W = a,J, + 03-]3 + aJi + asJs + ae I+ a7J?
+ asJiJs + s + ad2d s F andiJ + aids + and T, 6.1)

where a’s, as before, are material constants. In writing (6.1), it is assumed that W and
stresses vanish in the undeformed field free state.

We note that when the electric field is not present, then (6.1) reduces to the well-
known Murnaghan’s form [3] in the theory of finite deformations of elastic solids.

The corresponding approximate form for W in the classical sense when rotations are
also small can now be obtained by further neglecting in (6.1) those terms which are of
a degree higher than the third in the quantities du,/0X; or E; as well as product terms
of order higher than (du;/0X;)’E; . This approximation yields

) du; Ou;
W= 2+ w(%%) ol %
du; du; ou;

X, GX,,
+ 2(a2 + 2a3 - a9) GX GX,‘ aX + 4(a8 + 2a'7 + %%)(auk)

ou; ouy
0X, 0X;

ou; du; du;
0X; 0X, X,

+ 5 ) + 2(a, — @) 5
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_ ou; du; du, Ou; du; du, | u;
2as + @) 5% 9%, 9%, T 3% 3%, 9%, ox, T WEE: + 205 5% EE,

6 OUs nl 1 1
+ 2(16 L EkEk + (2010 + 4011)( ) Er — a0 :;v :; E.E,

dus dus ou; du;
+ as + a12) 5 9X, 90X, v EE; + (205 — ai) 75 0X,; aX; ax, BB + 2an OX 6X, ax, BEi

au,, au,,
+ a5y, ox,

7. Incompressible dielectric. If, in addition to being homogeneous and isotropic,
the elastic dielectric considered is incompressible, the third invariant of strain I, is
unity in all deformations, and is accordingly not a variable. The stored-energy W is
then a function only of five invariants I, , I, , I, , Is , and I, , defined in (3.7).

In terms of principal extensions e; , the constraint of no volume change according
to (4.2) demands

6“;, ( 6u,>
EiEi + 2a,; oX, BX + oX, E,-E,- . (6-2)

A+ e)d +e)(1 +e) = 1. (7.1)
Here it is convenient to introduce a new scalar invariant J} :
J;':Jz—'J]. (7.2)

For the incompressible case therefore, we have instead of (5.2) the following polynomial
expansion for W:

W= > BuaJiJIJTG . (7.3)

a,B,8. M p

With (7.1), it follows from (3.7), (4.2), (5.1), and (7.2) that the invariants J, and J} are
of second and third orders, respectively, in the principal extensions. Hence, within the
formulation of the first approximation for small finite deformations, defined in Sec. 5,
the appropriate stored-energy-function corresponding to (5.4) is given by

IV = lel + b2J4 + b3J5 y (7.4)

where b’s are physical constants of the material.
For the second approximation described in Sec. 6, the form of W that corresponds

to (6.1) is
W=b1J1+b2J4+b3J5+b4J§+b5J1J4+beJoo (75)
It may be observed that in the absence of electrostatic effects, (7.4) and (7.5) reduce

to the forms which in finite elasticity theory describe the well-known Neo—Hookean [8]
and Mooney-Rivlin [7] materials, respectively.

In conservative systems, a pressure p arises as a reaction to the constraint of no
volume change. Bearing this in mind, substitution of (7.4) in (3.9) and (3.10) leads to
the following constitutive relations of the first approximation:

gij = —=p 8 + Cigi; + CoEE; + Ci(guBrE; + gnEiE), (7.6)
D.’ = C'_)E" + C3gt'iEi y (7.7)

where p is an arbitrary pressure and C’s are the physical constants of the dielectric
medium.
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8. Simultaneous extension and shear of a cylindrical annulus. We consider a long
tube of homogeneous, isotropic, incompressible, elastic dielectric with initial internal
radius a and external radius b. The tube is subjected to a small finite deformation in
the presence of a weak electric field. The particle originally located at the point (R, 6, Z)
in cylindrical polar coordinates moves to the position (r, 4, z) given by

r=\R, 0=0649¢R), z=2Z/N+ wR). (8.1)

The above deformation is a simple extension of extension ratio 1/A\% a simple shear of
the tube in which each point moves through a distance w parallel to the axis and through
an angle ¢ about the axis, both ¢ and w dependent only on the radial position of the
point. It is verified readily that the mapping (8.1) is volume preserving.

We suppose that a radial electric field is imposed by placing the tube between the
plates of a coaxial cylindrical condenser. In view of (2.1) the radial field has to be of
the type

E, = E(, E, = E, = 0 inside the dielectric, (8.2)
and
E® = E®@, E° = E” = 0 in the surrounding medium. 8.3)

Here, as in all subsequent analysis, we shall refer to physical components in cylindrical
coordinate system.

The problem proposed here is to determine E,(r), E{”(r), ¢(R), w(R), and the
necessary surface tractions such that the deformation (8.1) can be supported without
mechanical body force or distributed charge in the presence of the electric field given
by (8.2) and (8.3).

In the absence of electrostatic effects, the deformation (8.1) has been studied by
Rivlin [12], and Singh and Pipkin [13]. More recently, in the theory of elastic dielectrics,
Singh and Pipkin [1] have shown that if the functional form of the stored-energy is
regarded as arbitrary, then the deformation (8.1) can be supported without mechanical
body force or distributed charge if and only if

¢(R) = Blog R, wR) = 0, 8.4

and the electric field is axial and uniform. However, we intend to show that if attention
is confined to small finite deformations permitting the application of constitutive
relations (7.6) and (7.7), a closed form solution can be obtained for ¢(R), w(R), E,(r),
and E”(r). The surface tractions that can support (8.1) in the presence of field (8.2)
and (8.3) can then be calculated.

With (8.1), the strain from (3.8) is

]

1
grr = xzﬂ g” = >‘2 + 7'2¢,2, gu ;\_4 + w/2,

(8.5)
gro = )‘r¢'p Jos = r¢'w', grs = )‘w,n

where primes indicate differentiation with respect to B. To obtain the components of
flux inside the dielectric, we substitute from (8.2) and (8.5) into (7.7):

D'- = (Cz + Cskz)E, y Da = C3kr¢’E' y D, = C3xw,E, . (8.6)

Outside the dielectric, the flux components from (3.1) are simply 1/¢ times those of
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the electric field (8.3). The Maxwell condition (2.2) that the flux be solenoidal both
inside and outside the dielectric now provides

E, = K/r, E® =L/, 8.7)

where K and L are any constants. By virtue of the continuity condition (2.3a),
= (C; + Cs\*)(K/¢). In place of (8.2) and (8.3) therefore, we now have

E,=K/fr, Ey,=E,=0; E® =(@C.+4C\N)K/er, E” =E” =0. (8.8
It is immediately clear that the field (8.8) meets the continuity condition (2.3b).
The corresponding stresses follow from using (8.5) and (8.8a) into (7.6), and appear as

2
o = —p+ 017\2 + (€. + 203)\2) ;.Ig'f ’ oo = —p + C‘()‘z + 7'2¢’2),

1 ,2 K., ,
O = _p + Cl '7 + w ’ Trg = Cl + CS M¢ (8'9)
K
Ors = (Cl + CE ))‘w ’ Tos = Cﬂ'¢’u)’
With the stresses (8.9) depending only upon r, the equations of equilibrium (2.7) become
3 00y, do, 2 do,, , 1
=+ Lo — o =0, 2 420,=0, T2+, =0. (810

The last two of (8.10), in conjunction with (8.9), can be integrated to yield
2
#(E) = Alog s + Av, w®) = Blog F®) + By, (8.11)

where A4, B, A, , and B, , are constants of integration, and to facilitate writing we have set

FR) = C\\R’ + C,K*. (8.12)
Suppose we have w = ¢ = 0 at the curved surface r = A\b, and w = w, , ¢ = ¢, at the
curved surface r = Aa. These conditions allow us to determine the constants A, B, 4, , B, ,
thus leading to

R’F(b) FER).

The constants ¥, and Q, stand for
b Wo
¥, = 2 2 ) Qo =T NN .
log (@F(b)/5F@) log (F(a)/F () (8.14)

The functions ¢(R) and w(R) having been so determined, we can now introduce
(8.13) and (8.9) into the first of the equilibrium equations (8.10) to find the pressure p:

n = (C +20x2)-@—20w[1 - + CoK” ]+a 8.1
ol 2 3 1 0 OgCl +C3K2 Clr2+03K2 ’ ('5)

where @ is a constant of integration. With pressure p given by (8.15), and ¢(R) and w(R)
given by (8.13), the stresses inside the dielectric medium are furnished by (8.9).
In the medium surrounding the dielectric, the Maxwell stresses follow by substituting

the field (8.8b) into (3.2):
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o = —6f? = —¢® = (C, + 2C\})K?/2er?,

(8.16)

o) __ ) __ ) __
Opg = 0Ogs = O0ry = 0.

In order to support the deformation (8.1) in the field prescribed as in (8.2) and (8.3),
the tractions which must be applied to the curved surfaces r = \a and r = \b are obtained
from (2.8) when use is made of (8.9), (8.13), (8.15), and (8.16):

K* [ Na? C.K’ ]
— _ 2 2 3
T,(r = )\a) = (Cz + 203)\ ) 2x202 + 201A2\I/0 lOg CIA2a2 + CaKz + Clx2a2 + Cng
2
- (Cz + 203)\2)2 2§2 az + @, (817)
2
To(r = Aa) = E:’alz{—z‘l/o. , T‘(r = xa) = 2—67—’-% y (8.18)

The constants ¥, and Q, above are as in (8.14). By setting the radial component T,
in (8.17) of the applied traction to zero, the arbitrary constant ® can be easily evaluated.
Expressions for surface tractions at the curved surface r = Ab may be derived in a
similar manner replacing a by b in (8.17) and (8.18). Since we do not have accurate
exyressions for the fields near the edges bounded by the plane ends of the tube, we
will not calculate the end tractions. However, it is readily noted from (8.9) and (8.16)
that in case the tube is of finite length, normal and shearing tractions must be applied
to its ends to maintain the given state.

We observe here that if either of the curved surfaces, say r = Mg, is free from applied
tangential tractions, then since the Maxwell stresses oy’ and o2’ happen to be zero
in the field considered, the stresses g, and o,, inside the dielectric medium will also
have to vanish by virtue of continuity conditions (2.8) and the last two of equilibrium
equations (8.10). This, in conjunction with (8.9), would then demand ¢'(R) = w’(R) = 0,
as to be expected.

The case of no extension is the special case of the problem considered above when A is
equal to unity. Physically, this special case may be demonstrated by holding the tube
between two rigid coaxial cylinders with the outer cylinder kept fixed while moving
the inner one along the axis of the tube as well as rotating it about the axis.
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