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ELASTOSTATIC BOUNDARY REGION PROBLEM IN SOLID CYLINDERS*

BY

ROBERT WM. LITTLE (Michigan State University) and S. BART CHILDS1 (University of Houston)

1. Introduction. We will consider the problem of a semi-infinite solid elastic cylinder
occupying the region r<l, 0<z<+», where r and z are the cylindrical coordinates.
The problem will be restricted to the axisymmetric case and <xr, ae, <j. will be the normal
stresses and r = rr, the nonzero shear stress. Let u and w be the displacements in the
radial and z directions respectively. We will consider the curved surface r — 1 to be
free of stress

r = 1, 0 < z < 0°, ov = r = 0. (1.1)

At the edge z = 0, we will specify one of the following conditions:

<r, = atb , u = ((1 + v)/E)ub , (1,2a)

t = rt , w = ((1 + v)/E)w„ , (1,2b)
a, = <r,h , t = rb , (l-2c)

« = ((!+ ")/#K , w = ((1 + v)/E)wb , (1 -2d)

where the subscript b indicates a given function. It will be assumed that the stresses
are self-equilibrating and the displacements satisfy sufficient conditions to ensure
decaying solutions.

solution —* 0 as z —> oo.

The problems involving specification of (1.2a) or (1.2b) will be referred to as mixed
problems, while (1.2c) represents the stress problem and (1.2d) represents the dis-
placement problem. The stress problem is the most important involving the complete
investigation of the Saint Venant boundary layer for this geometry in the case that
rb and alb are self-equilibrating axisymmetric tractions.

The stress problem assumes the same fundamental importance as does the strip
problem of plane elasticity [1] and serves as the predecessor to the investigation of
boundary layers in cylindrical shells. The stress problem in solid cylinders has previously
been investigated by Horvay and Mirabal [2], Hodgkins [3] and Mendelson and
Roberts [4], Although mention is made in these articles of an eigenfunction expansion
appropriate for solution of this problem, this method was not used due to the difficulty
of obtaining the eigenvalues and the fact that the eigenfunctions are not orthogonal.

Murray [5] in the mathematically similar thermal stress problem formulated his
solution in terms of the eigenfunctions but retained only the first two terms of the
series and used approximate methods to choose the coefficients. Horvay, Giaver and
Mirabal [6] and Youngdahl and Sternberg [7] also gave consideration to this thermal
problem.

♦Received August 16, 1966; revised manuscript received December 6, 1966. This work was done
under NSF Research Grant GP-3083.
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2. Formulation of problem. The problem will be solved by use of the Love strain
function [8]. The governing differential equation for this function is

V2W = 0 (2.1)
where V2 is the Laplacian operator, in cylindrical coordinates:

V2() = (),rr + j7 ().r + ().«, • (2.2)

The nonzero stresses and deformations are expressed in terms of \p as follows;

(J, = [vVV — i, rr], z, (2.3a)

= ["VV - i *, r] ,2, (2.3b)

<r, = [(2-f)VV- (2.3c)
r = [(1 - p)VV - h «], r, (2.3d)
u = -((1 +p)/E)t,r., (2.3e)
w = ((1 + v)/E)[2(1 - ,V)2^ - „]. (2.30

We will assume a solution of the form
CO

^ exp (-7,2). (2.4)
i

Substitution into the biharmonic equation yields

(w + i| + 72)V) = °. (2.5)
The solution bounded at r = 0 is:

M(r) = A J 0(7,r) + By/rJ i(y,r). (2.6)

Satisfying the boundary conditions, (1.1) yields

M(r) = -[2(1 - v)(Jy(y,)/y,) + J0(y,)]Jo(y,r) - J(2.7)
where 7,- are the roots of the transcendental equation (See Table I)

JIM + [1 - (2(1 - V)/y2)]J\{y) = 0. (2.8)
The summation indicated in (2.4) is done over the eigenvalues in the right half complex
plane (7,- , 7*), where * denotes the complex conjugate.

We may now identify a vector f related to the proper derivatives of M, as follows;

f = £ a,<J>,(r) exp (-7,2) (2.9)
i

where

f =
Eu/( 1 + v)

Ew/(1 + v)_

(2.10)



(2.13a)
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The components of «j>, (r) are:

</>'" = [27- 7°J0(7,)\Jo(7,r) ~ ylAiyJrJM, (2.11a)
4>r = 7^i(7,• >Jo(7,r) - yUoh,)J1(.7,r), (2.11b)

= ~72,Ji(7,)rJo(.7,r) + [2(1 - + 7-/o(7,)]^i(7,r), (2.11c)

^ = [7^0(7.) - 2(1 - 07,Ji(7,)]./o(7,r) + 7>U7i)Ji(7ir). (2.11d)

In this form the boundary values of f may be represented in an eigenfunction expansion,

t = £ «:<{•>■ (0- (2.12)
J

The functions (j>,-(r) are not orthogonal but a set of biorthogonal functions W,(r)
will be developed in the next section. The biorthogonality relation is:

f Wt(r)-<i>,(r)r dr = 0 if j ^ k,
J 0

= iV; if j = k,
where

iV,- = (1 - ")[-47;Vo(7,) ~ 27,^(7,) + 4(1 - v)J0(yj)J1(7,)]• (2.13b)

The biorthogonal vector has the following components:

w,a> = 9 L s {[y,Jo(7,) ~ 2(1 - v)Ji{y,)\J0(7/) + 7,^(7>^(7,r)|, (2.14a)
^7i" n7ij

= 27,^(7,) ^'rJ'^')Jo(7/) - [2(1 - V)Ji{7i) + 7,/o(7,)]^i(71r)}) (2.14b)

^'■3) = ! -7]rJi{y,)Jo{y,r) + 7^0(7,^1(7;)), (2.14c)

W'-4> = 9 ^ ^ l[27)^i(7j) - 7^o(7,)]/o(7,r) - 7,^i(7M(7/)|. (2.14d)
l\7i)

The coefficients a, may now be obtained by use of the biorthogonality condition;

ai = i|'wrfirrfr, (2.15)

a, = Y. I + W^^2) + W'n1™ + ^WJrdr. (2.16)

3. Biorthogonal vector. The biorthogonal vectors will be obtained in an indirect
manner through solution of the two mixed boundary problems. The solution of the
biharmonic equation will be taken in the following forms [9]:

i = 2] (Am + Bm&mz)J0(fimr) exp (-/3mz)
m

+ f {C(a)I0(ar) + D(a)rli(ar)) cos az da (3.1a)
J 0
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or

t = X) (4m + 0{fimr) exp (-@mz)
m

+ [ [C(a)I0(ar) + Dio^arl^ar)] sin az da (3.1b)
J o

depending upon whether the sine or cosine Fourier integral is desired. To specify the
conditions (1.2a), we will assume the solution in the form of (3.1a). Differentiation and
substitution of (3.1a) into (2.3d) yields

r = 53 0m[4m + Bm(J3mz - 2v)]J1(J3mr) exp (-pmz)
m

+ [ [C(a)Il(ar) + D(a)[arl0(ar) + 2(1 — v)I1(ar)] }a3 cos azda. (3.2)
Jo

Specifying r\T.l = 0 yields the following conditions;

J,(/3«) = 0, (3.3)
C = -D[2(1 - v) + a/o(a)//,(a)]. (3.4)

Substitution of (3.1a) into (2.3a) yields the following;

rr = 53 P
m

+ (Am+ Bm(J3mz - 1)

(~Am — Bm(fimz - 1 - 2v))J0(fimr)

+ I.
18„,r .

I Mr)

exp (—0mz)

7o(ar) " + D(a)a [(1 — 2v)I0(ar) + arIi(otr)] f sin cxz da.

(3.5)
The boundary condition <rr|r_i = 0 leads to the equation

J" |c(a) I0(a) - + D(a)[( 1 - 2v)Ia(a) + «/,(a)]| a3 sin az da

= 53 [~+ Bm( 1 + 2p) — Bmpmz]B3mJ0(J3m) exp (—&mz). (3.6)

Taking the inverse Fourier transform yields:

n _ 2 V AJotfJIMKA^a2 + pi) + Bm(( 1 - 2v)(a + £) - 2q2)l
7T V «V + )3l)2r(a) (3J)

where

T(a) = -11(a) + Ij(«)[l + 2(1 - „)/a2]. (3.8)
One may now note that the a's are related to the y's by an = iyH . The Love function
becomes

$ = 53 (4™ + Bmpmz)J0(pmr) exp (—/3„z)
m

,2 V f" PmJo(&m)L(a, P„)M(a, r) COS (az) (/a
T _ Z-/ / 2/ 2 , o2\2mf \ vo.ya;T m J o a (a + Pm) 1 [a)
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or, in terms of an infinite integral

i = X (Am + Bmpmz)J0(fimr) exp (-/3mz)
m

, 1 v f !3m)M(a, r)e'°" da QW.
~T 2L, \ 2, 2 , ^2 \ 2m/ \ (,0.yD;x m a (a + pm) 1 (a)

where

L(a, /?„) = ^„(a2 + /£) + Bm((l - 2„)(a2 + /£.) - 2a2), (3.10)

M(a, r) = h(a)rIM) ~ [2(1 - + /0(a)]70(ar). (3.11)

The infinite integral may be evaluated by calculus of residues taking the contour
integration around the poles in the upper half plane. The pole of order two at the origin
does not contribute to the solution. There are poles of order two at a = ±t/3„ and
simple poles at the eigenvalues of the transcendental T(a).

If the first quadrant eigenvalues of T(a) are denoted by a,- , there will also
be eigenvalues at a* , —a* and —a, . Only the poles a, and — «*• are in the upper half
plane.

The residue due to the poles at ±i/3m cancel the Fourier-Bessel series term by term,
and the final value of \p is obtained due to the residues at the eigenvalues of T(a). The
form of \f/ becomes

* ~ ? ? 5T+15X (3'12)
where

Fj = -2a,72(a,) + «,/?(<*,) + 2(1 - „)/„(«,)/, («,). (3.13)
It should be noted again that the summation of j is done over the eigenvalues of T(at)
in the first and second quadrants.

The boundary conditions on the finite end will be satisfied by use of (3.1a).
Substitution of this equation into the equations for a, and u and evaluating at z = 0
yields:

t.I.-o = £ + Bm(l - 2v)}l3lJo(0mr)> (3.14)
m

tt|,-o = Y, {Am - B„.}/£/I(ft.r)((l + v)/E). (3.15)

(3.16)

Using the boundary condition (1.2a), the coefficients Am and Bm become;

t dv
Am = J [c«t'/o03m?') (1 2v)ut,J1 (/3„r)] ̂    v)/3aJ2(J3 ) '

B. - I (1 _ j£jM- <317>

It is convenient to rewrite (3.12) in the following form

, _ y> j Limfi3mJo(ftn)~l Mj exp (ia,-z) ^ ^
i L m («< + PIT J
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Denoting c, as follows,

C, = i £ Lrf+i?y ■ (3.19)
m (Oij + P m)

Substituting (3.16) and (3.17) into (3.19) and interchanging order of integration and
summation yields:

_ • fl / <r,b To/l _ \ V ^o(fimQ O 2 V  ^o(Pmr) "1
Jo 1(1 - v) L ( V («• + Pl)Jo(j3~) • ~ (a- + finf Jo(/3m)J

ub f 0 2 i(0mr) r dr. (3.20)+ (i - ") [ 2a' ? («* + AfJM.
Noting the following transforms,

y- <3m/,(gmr) _ r/0(a,r) /„(a,■)/,(«,r) .
^ (a? + /3*)V„(/3J 4a,■/,(«,) 4a,J?(a,) ' l j

V Jq(M 7o(a,)/o(a,r) _ r7.(a,r)
t' (a? + /£)V„(/U 4a*J1(a,) 4a?/,(a,) '

y* '/o(/3.,r)    /o(a,T)
V (a? + /£)J0(ft.) 2a,/,(«,) ' ( j

the expression for c,- may be written as follows:

"• " * /, (i -») [{!,/,(«,) ~ + *

/.' (T2^) [^) + *• (3-24)+ i

The expression for xp becomes

4, = EcAaM, (3.25)
I ' <

The second mixed boundary condition given by (1.2b) may be handled in a similar
manner. Beginning with (3.1b) the following expression for \f/ is obtained:

»- (3.26)
J ^ I

where
/•i _ TrLi n _ ..V

/x(a,r) /r firJ, = /' 7J-5-T +

+

(1 - v) I 21 Mi)
fl w»

Jo (1 -

IqM (l - p)
2/?(a,) a,/,(a,)_

v)
h(a,r) - dr. (3.27)a^ofe) _ 1

- 2/?(a,) /i(a,)_T
Substitution of a,- = z'y; into Eqs. (3.24) and (3.27) yield the desired form from which
the biorthogonal eigenvectors W,(r) may be deduced. The constants F,- are related
to the normalization constants N,- by the following equation:

N, = — 2i(l - v)Fi . (3.28)
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4. Solution of specific boundary conditions. To reduce the general solution (2.12)
to the mixed problem (1.2a), we will specify the following for fb ,

fl" = , (4.1a)
H2) = Z (4.1b)

i
1I3) = Ub , (4.1c)

/J4' = E a,4?>(r). (4.Id)j
Using Eq. (2.16), the constants a,- become

a'=w. r +w^r dr

+ TT f Z ak[W]V + WfW^r dr. (4.2)
iY j J o is

Substitution from (2.11) and (2.14) shows that

f [Wj2)4>l2) + W^nr dr = 0 if j* k,
Jo (4.3)

N< -t ■ L.= Y lf > = k-

Using this inner biorthogonality condition (4.2) becomes;

a,- = y fo [W?\t„ + W?\]r dr. (4.4)

This equation is the same as (3.24) except for notational changes.
' The other mixed problem (1.2b) also exhibits an inner biorthogonality condition
and is obtained from the general solution in a similar manner. The result for the
coefficients a,- is;

a,- = -|- £ [W]2)rb + WjA)wb]r dr. (4.5)

The stress and displacement problems do not exhibit an inner biorthogonality
property and, therefore, do not reduce to a form where the coefficients a,- may be obtained
directly. For the stress boundary problem, (1.2c) we specify:

= ^6 , 1™ = X a,4?\r),
(4.6)

fin = n , r = £ a,0<».i
Substitution into (2.15) yields the following expression for the constants a,- ;

a,- = ~ £ [W^ab + W]2)rb]r dr

+ W E a* f [W(,V + W<W dr, (4.7)
•*Y ,• if Jo
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Table I
Roots of the Transcendental Equation (2.8)

= 0. v = 0.25

1 2.5567699 +il.3889670
2 6.0058627 1.6387025
3 9.2331665 1.8290585
4 12.417892 1.9678845
5 15.585955 2.0768032
6 18.745600 2.1663589
7 21.900357 2.2423784
8 25.052005 2.3084045
9 28.201546 2.3667575

10 31.349590 2.4190317
11 34.496531 2.4663634
12 37.642634 2.5096184
13 40.788084 2.5494371
14 43.933016 2.5863247
15 47.077530 2.6206835
16 50.221701 2.6528348
17 53.365584 2.6830475
18 56.509231 2.7115412
19 59.652673 2.7384999
20 62.795941 2.7640825

1 2.6976518 +t"l. 3673570
2 6.0512222 1.6381471
3 9.2612734 1.8285342
4 12.438444 1.9674283
5 15.602204 2.0764211
6 18.759055 2.1660392
7 21.911845 2.2421081
8 25.062031 2.3081733
9 28.210443 2.3665585

10 31.357587 2.4188579
11 34.503796 2.4662104
12 37.649288 2.5094822
13 40.794222 2.5493159
14 43.938715 2.5862151
15 47.082846 2.6205834
16 50.226683 2.6527455
17 53.370274 2.6829654
18 56.513658 2.7114654
19 59.656867 2.7384311
20 62.799924 2.7640179

* = 0.30 0.50

1 2.7221755 +il. 3621971
2 6.0600832 1.6376243
3 9.2668352 1.8282558
4 12.442529 1.9672411
5 15.605440 2.0762837
6 18.761738 2.1659330
7 21.914138 2.2420234
8 25.064033 2.3081035
9 28.212220 2.3664995

10 31.359185 2.4188080
11 34.505246 2.4661675
12 37.650618 2.5094447
13 40.795451 2.5492821
14 43.939854 2.5861858
15 47.083910 2.6205568
16 50.227679 2.6527203
17 53.371211 2.6829441
18 56.514543 2.7114455
19 59.657704 2.7384134
20 62.800720 2.7640011

1 2.8105617 +il.3399331
2 6.0947291 1.6342958
3 9.2888501 1.8265905
4 12.458767 1.9661816
5 15.618332 2.0755346
6 18.772437 2.1653696
7 21.923286 2.2415813
8 25.072026 2.3077463
9 28.219317 2.3662036

10 31.365568 2.4185578
11 34.511046 2.4659532
12 37.655931 2.5092599
13 40.800353 2.5491195
14 43.944407 2.5860418
15 47.088157 2.6204285
16 50.231661 2.6526054
17 53.374957 2.6828392
18 56.518082 2.7113512
19 59.661057 2.7383264
20 62.803905 2.7639218

i In (4nir)l t
Asymptotic formula y„ ~ in*   > +—In (4nw)

\nir f 2
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Convergence of Eigenfunction Expansions

Table II

Specified
Function

, = 1 - 2r!

Number of paired eigenvalues

10 20

0.
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.0
0.98
0.92
0.82
0.68
0.50
0.28
0.02

-0.28
-0.62
-1.00

0.975
0.985
0.937
0.794
0.667
0.547
0.283

-0.048
-0.261
-0.561
-1.087

1.008
0.982
0.914
0.829
0.668
0.513
0.265
0.035

-0.294
-0.607
-1.047

0.993
0.982
0.920
0.819
0.681
0.500
0.279

+0.021
-0.278
-0.626
-1.022

This may be rewritten as follows:

a,- = Fi + Z Sikak (4.8)
lc

where

Fi = { [Wi1)ab + W^Tb]r dr' (4"9)

S« = ~ ^ [W'V + W'Vjr dr. (4.10)

Equation (4.8) is a system of infinite equations in infinitely many unknowns which
can be solved by truncation to obtain values of a, to any desired degree of accuracy.

Table III

Specified Function
= 2Ar - 2.6r3 + 0.2rs

Number of paired eigenvalues

10 20

0.
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

.0

.237

.459

.650

.796

.881

.894

.822

.654

.383
0.

0.
0.222
0.479
0.665
0.755
0.870
0.957
0.828
0.577
0.400
0.

0.
0.243
0.454
0.654
0.795
0.877
0.903
0.805
0.677
0.357
0.

0.
0.239
0.457
0.651
0.796
0.880
0.894
0.823
0.651
0.382
0.



270 ROBERT WM. LITTLE AND S. BART CHILDS [Vol. XXV, No. 3

The less important displacement problem leads to a system of equations of the
same form as (4.8).

5. Example problem. To examine numerically the convergence of the series to
the given boundary values, we will consider the stress problem:

= 1 2r2, (5.1)

rb = 2.4r - 2.6r3 + 0.2r\ (5.2)
The tractions, (5.1) and (5.2), were picked because they are fairly general in form,
the shearing stresses are zero at the center and outside of the bar, and both
have maximum orders of magnitude of unity.

All numerical results are for Poisson's ratio equal to 0.3, except for Table I. We
have truncated the system of equations (4.8) to the first five, ten, and twenty pairs
of eigenvalues. Tables II and III show how well (4.6) satisfies the specified tractions
via each truncated system (4.8).

The decay properties of the stresses for this case are shown in Figs. 1 and 2.

Fig. 1. Decay properties of a, and as at r = 1.
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cr r

Fig. 2. Decay properties of at at r = 0 and ratr = 0.5.

6. Conclusions. The solution of the cylinder problem has been reduced to an eigen-
function expansion in terms of the end conditions. This form of solution has been known
for some time but not utilized due to reasons mentioned previously and discussed by
Horvay [2], By use of the biorthogonal vectors deduced in an indirect manner, the
problem may be solved with the aid of a digital computer without great difficulty.

The necessary conditions on the stresses to ensure a decaying solution are known
but those on the displacements are yet to be determined. M. I. Gusein-Zade has recently
obtained these conditions for the related two-dimensional semi-infinite strip problem [10]
and similar development is required in this case.

The biorthogonality vectors were obtained for the desired end stress and displacement
functions and not for the Love function directly. A "generalized biorthogonality"
condition for the functions M,(r) (Eq. 2.7) could have been obtained as was done by
Papkovich in the strip problem [11], [12] for cases when ar is not specified on the curved
surfaces. (See Appendix) This approach, although more direct, and therefore more
desirable, did not prove fruitful in the case of stress free surfaces.
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Appendix I. The solution for the Love strain function for the semi-infinite cylinder
may be assumed in the form

t = X) A,M,(r) exp (~y,z). (A.l)
The equation for Af,(r) involves the non-self-adjoint interated Bessel operator,

as shown:

(L + y*)2Mj(r) = 0 (A.2)
where

L = ,, + <A-3»

Defining the adjoint operator as L* where

dr2

L* - —
dr2 r

w 1 = Ar a/Tf
r dr r2 dr Lr dr \r/_ (A .4)

we may write the adjoint equation as follows:

(L* + y2M) = 0. (A .5)
The boundary conditions on <£,(r) will be chosen such that the </>,(r) will satisfy
a generalized biorthogonality condition with Af, (r). The biorthogonality condition may
be written as follows:

f [yML + y2)2M, - y)M,{L* + yl)3^} dr = 0. (A.6)

Expanding and integrating by parts yields

(t! - y°) jT [(L*fa)(LM,) - yhU.M,] dr = | (LM,) - ^ (<k)LM,}

+ 72{m, -g - 2ywJ]4» | (AT,) — M, fo)} (A.7)

where D/Dr is the differential operator

£"i0- <A-8>
On the surface r = 1, the following boundary conditions may be specified

<j, = 0, t — 0, (A.9a)

<rr = 0, i» = 0, (A.9b)

r = 0, u = 0, (A.9c)

u = 0, w = 0. (A.9d)
The conditions that the stresses or displacements are zero are equivalent to the following
conditions upon Af, at r = 1.

- o, lm, = ^ , (A.10)
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'-0' i " <r=-V'f1 ■ <AU>
„ _ i£l _ 0, (A.12)

to = 0, LM, - • (A.13)

Examination of equations (A.10), (A.ll), and (A.13) when substituted into (A.7)
shows that the biorthogonality conditions may not be determined in this manner for
the boundary condition (A.9a) and (A.9b). The indirect method previously discussed
was therefore employed. The remaining boundary conditions (A.9c) and (A.9d) are
such that biorthogonal functions 4>k may be determined due to the fact that proper
conditions may be found such that the right hand side of (A.7) vanishes.
The boundary conditions corresponding to (A.9c) are as follows:

^ /r */ \ ^ 2 i /1 1 1 \<A-U)

dMJdr = 0. (A.12)
These may be written

| {LM,) = 0, (A.14a)

| = 0. (A.14b)

The boundary conditions of <f>k are therefore:

D_
Dr

Dr ^ v*) 4 Dr

These may be written

~ (</>*) = 0, (A.15a)

D (L*<t>k) + 2yl ~ (fc) = 0. (A.15b)

§-r (<t») = 0, (A.16)

§-r {L*4>k) = 0. (A.17)

The functions M, and the eigenvalues are different in this case than those given by (2.7)
and (2.8) and are given as follows:

,a _ {7,-^o(7,-)Jo(Y,r) + VP J\(yi)J 1(7/)} ,A 1cs- ji(y.) (A-18)

where 7,- are the zeros of .A (7,-). The biorthogonal functions for this case become:

<t>k = 7 krMk (A. 19)

and the functions are orthogonal subject to the weighting function r.
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The boundary conditions corresponding to (A.9d) are as follows:

LMi = > (A-13)

dMJdr = 0. (A. 12)
The boundary conditions on 4>k become:

<t>k = 0, (A. 20)

+ " °- (A-21)

The eigenfunction Mt and the eigenvalues for this case are as follows:

Mj = ~j^~) hiJohiWohri + y<rJi(y>)Ji(yir)] (A.22)

where 7, is defined by the transcendental equation

yMd + -/?(*)] ~ 4(1 - v)J0(yi)J1{yi) = 0. (A.23)
The biorthogonal functions become:

= —77-^ [ylrJi{yk)Jaiy/) - (ykrf J0(yk)Ji(ytr)]. (A.24)
J o\y k)
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