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Abstract. The contact problem of elastic bodies, each consisting of a finite layer of
uniform thickness rigidly adhering to a half-plane, is investigated on the basis of the
two-dimensional theory of elasticity. The materials of the layer and the half-plane in
the contact body are isotropic and homogeneous, yet each of them may have distinct
elastic properties. The mixed boundary value problem is reduced to a single Fredholm
integral equation of the second kind where the unknown variable is a fictitious surface
deformation, through which the contact pressure can easily be obtained.

I. Introduction. One of the usual methods of solving mixed boundary value problems
in the theory of elasticity is to use dual integral equations, which are then trans-
formed into the form of Fredholm integral equations. Recently England [1] and Keer
[2], using the method suggested by Collins [3, 4], have reduced their axially symmetric
contact problems directly to Fredholm equations. In this paper, an approach is suggested
for solving two-dimensional contact problems, particularly for the problems of two
layered elastic bodies. The contact body is considered to be formed of an elastic layer
of uniform thickness rigidly adhering to a semi-infinite elastic substrate, where the
layer and the substrate generally have dissimilar elastic properties.

Using the complex variable solution for the mixed boundary value problem of a
half-plane and the Fourier integral solutions for an elastic layer and for a half-plane,
the present mixed boundary value problem of layered elastic substrates is reduced to a
single Fredholm integral equation of the second kind. The unknown variable in this
integral equation is a "fictitious" surface deformation through which the pressure at
the contact region may be obtained without difficulty.

For the simplicity of presentation, mathematical derivations will be given in the
second section of this paper for the contact of a layered elastic substrate and a rigid body.
The result is generalized in part three for the case of two layered elastic bodies in contact.

II. The mixed boundary value problem of a layered half-plane. An elastic layer
—h < y < 0 of infinite extent and an elastic substrate — « < y < —h, both isotropic
and homogeneous but of different material properties, are rigidly adhered at y = —h.
As a smooth, rigid, cylindrical punch of surface contour f(x) is pressed against the layer
on the surface y = 0 by a normal force P along the ^-direction as shown in Fig. 1, a
contact pressure p(x) is developed over the region — a<x<a on the boundary y = 0.
Using u and v to denote the components of infinitesimal displacement in the x and y
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direction, ru„ and tvx the normal and the shear stresses in the y direction, the boundary
conditions can be expressed as;

(i) Along the boundary y = 0,

(Oi = 0, |x| > a, (la)

(01 = 0, (lb)

(-) -W, \x\ < a. (lc)

(ii) Along the interface y — —h and for all values of x

(Oi = (Oj . (2a)
(01 = (O 2 , (2b)

(t), - (I), ■ «
(I), " (I), ■ »

where the subscript 1 has been used to denote the quantities of the layer and the sub-
script 2 those of the substrate.

For the sake of simplicity, we assume that j(x) is symmetric and has no corners,
such that the contact pressure p{x) is zero at the ends of the contact length. The general
case can be derived in a similar manner.

The general solutions for a half-plane — < y < —h and for a layer —h<y< 0
in the form of Fourier integrals are given by Sneddon [5].1 Introducing the symbols
yl — y + h, y — y/h and yt = y,/h, the general expressions for the stresses and displace-
ments in plane strain for the symmetrically loaded layer and substrate can be written as

2 r d*G. /, x\ ,,- S" A Wcos ̂  if 1

' ~7h' L t Gi COS (S i) di'

£fsi° («!)«• <3>
'Z' I [" " "/u']cos(£f)
dv 2(1 + „<) f~[„ , a3(?, , , m aG.l . (^x\^ = -rfjr I L(1 -Pt) w + (* -2) sm v* 1) *

Where E and v are the Young's modulus and Poisson's ratio respectively, i — 1, 2,
and the function G is as follows:

(1) The layer
G, = (-4, + Byy) ch (£y) + (c, + D,y) sh (£?/). (4a)

'The variable £ and the functions B and D in [5] are replaced by the quantities f/7t, B/h and D/h
respectively to obtain Eqs. (3) and (4) in which £ is a dimensionless dummy variable.
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(2) The substrate

G2 = (A2 + B2yi) exp (£/,). (4b)

One possible approach to obtain the solution for the layer and for the substrate
is to substitute Eqs. (3) and (4) directly into the boundary conditions (1) and (2) for
the boundary y = 0 and the interface, and then solve for the unknown functions of £
and the contact pressure p(x). This method finally requires a solution for dual integral
equations. This paper presents an alternate method aimed at reducing the problem to a
single Fredholm integral equation of the second kind which can then be solved by using
a standard technique.

Consider that the solution for the layer in this problem consists of two parts: (a) the
solution for a slab —h<y< 0 with zero surface traction on the surface y = 0 and (b)
the solution for a half-plane y < 0 which is pressed upon by a smooth rigid punch having
a contour g(x) over the region |z| < a. (The function g(x) is to be sought.) Here both
the slab and the half plane have the same material properties as the original layer.
The sum of the two solutions is then, according to the continuity condition given in
Eq. (2), equated to the stresses and displacement derivatives of the substrate at y = —h
expressed in Eq. (3) and (4b).

The solution for the layer in part (a) is expressed in Fourier integral form as given
in Eqs. (3) and (4a), and since there is no surface traction on y = 0, it follows immediately
that

A^) = 0, (5)

Bti) + fC,® = o. (6)
As for the half-plane y < 0 in part (b), its solution can be expressed in terms of a

single complex function $(s) [6], z = x + iy. For the case that the contact pressure p(x)
vanishes at z — ±a and g(x) is an even function,

_ ff,(a2 - a2)1/2 f g'(t) dt _ E[(a2 - z2)'/2 [" tg'(t)dt  
*{z) ~ Ml - "f) J-. (t - z)(a2 - /2)175 " 2tt(1 - ,2) Jo (/2 - z2)(a - t2)wl W

where g'(t) = dg/dx and X(z) = (a2 — z2)172 is the branch, single-valued in the plane
cut x = -a to i = +a along the x-axis, for which the argument is so selected that
X+(t) = (a2 — <2)1/2 and X~(t) = —(a2 — i2)172, where the (+) and ( —) denote the
boundary values taken respectively on the upper and lower edges of the cut. For the
points at a depth h below the surface, z = x — ih = z0 , we obtain from Eq. (7)

f irp . CN WW dl
- ^(1 _ v2)h ja V, , (a2 _ f)/; c

(du\ _ 1 f" ,on _ rri   CI tg'(
2tt(1 - Vl)h J0 C ( VlJ J (a -

tg'(t) dt

where

2tt(1 - Vl)h Jo 1 v " J (a - ty

T(x, t) = h Re [F(zu)],

S(x, t) = -h2 Im [F'(z0)],

(8b)

2Plane strain case.
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F(.s X(z) dF(z)
m -1 _ z., v (z) - dz ■

The integrals in Eq. (8) can also be expressed as Fourier integrals similar to those
in Eq. (3), so that

El /V + S) /; «■«, cos (f) di,

rpaS]
t(1 — v\)h J0 ^ ' 'J> (a — t2)1 nn JO \» / .• ^

2x(l — vi)h J0 "u± (a2 — t2),/2

- I" -2" - cos (£) *•
By taking the Fourier inverse transform on both sides of Eq. (8) and solving for a,
and , we have

ex r „ , r m tg'(t) dt
—T-. 5T / cos Zydr) (T + S) j-5 :2ri72 ,
7r(l — fi) Jo Jo {a - t)

/^'(/) dt
t2)U2 ,

in which the variable xixxT and S is replaced by ijh. After changing the order of integra-

j-2f«i = —

» - 4,(1 -txi - »;> I"cos £' /.'14(1 - ")T +
ich the variable xixxT and S is rep

tion, Eq. (10) can further be written as

j.2 Eih r (t \ tt\ *9 0fo,   7^ 27 / (i + //; 7-2
7r(l — f,) Jo (a —

*g'(Q
] (11)

.. E,h2 [" TA/1 \r 1 rri tg'(t) dt
~ 4tt(1 - ,0(1 - v\) Jo [4(1 Vl)I + H] (a2 - O1'2 '

where I, H are, respectively, the Fourier cosine integrals of T and S, i.e.

/(£, t) — f T(rih, t) cos £77 dri, H(%, t) = f S(t]h, t) cos £7; rfjj.
Jo Jo

The integrals / and // are evaluated in the Appendix and the results are as follows:

V - ty/2// = £/= -f £<T{ / sin («1)+,§, yv («s)p,fe]'
where

(11a)

™ - (J - I ' ■' -'''234.6 <2t2t 3> ■ £ £ °
The substitution of the stresses and displacement derivatives given in Eqs. (3),

(4) and (9) into Eq. (2) yield, with the aid of Eqs. (5) and (6), the following four si-
multaneous equations:

[5i(f ch £ - £ sh £) - Z>i£2 sh £ - £2aJ + ?A2 = 0, (12a)
[B^2 sh £ — jDi(£ sh £ + £2 ch £) + £0! + £2c*i] — t;B2 — £2j42 — 0, (12b)

{S, [(2ft — 1)£ sh £ — £2 ch £] + -Oi[£2 sh £ + 2(1 — ?,)£ ch £]

+ £2<*i + 2(1 - „,)&,} ~ y?A, - 2y(l - v2)£B2 = 0, (12c)



(13)

(14)
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{£,[£2 sh i - 2(1 - *,){ ch f] + D,[(l - 2e,)£ sh f - e ch {]
+ £2«i — (1 — 2vi)^i) — y?A2 + (1 — 2v2)y£B2 = 0, (12d)

where y = G,/G2 , the ratio of the shear moduli.
Eliminating A2 and B2 from Eq. (12), we obtain

eBx + bDi = (7 — l)fa, + 2[(1 — v2)y — (1 - v,)]/3i .

cBt + dDx = (7 — 1 )£a, — [(1 — 2y2)y — (1 — 2vl)](i1 ,
where

e = [(7 — 1)(1 — 2c,) — 27(1 — e2)£] sh £ — [1 + 7 — 2yv2]£ ch £,

b = [27(1 - v2) + (1 + 7 - 27-^] sh £ + 2[(1 - o) + 7(1 - "2)f] ch f,

c = t—27(1 - ^2) + (1 + 7 ~ ZyJH] Sh £ + 2[—(1 - „,) + 7(1 - v2)f] ch {,
d = [-(7 - i)(i - 2,0 - 27(1 - v2)k\ sh £ - [1 + 7 - 2yp2]^ ch f.
Using the result of Eq. (11), the function B,(£) can be obtained from Eq. (13),

p ex [dk, + bh + m* + ^)] r m, twit) dt
'® _ 7r(l - de - be Jo (a2 - 01/2 ' ( )

where

ki = 7 — 1 + 2(e, — yv2),

1. ^ , (! ~ •'2)7
h ~ 5 ~ 7 + 2(1 - „.) '

^3 = 2(7 — 1 + e, — v2y),

b = v _ 1 1 (1 ~ 2,2)7 ~ (1 ~ 2c,)
4 7 + 4(1 - c.)

It still remains to satisfy the boundary condition (lc) by the superimposed solution
for the layer. Since the prescribed displacement derivative of the auxiliary half-plane
is g'{x) while that from the general Fourier integral solution for a layer having zero
surface traction on the surface y — 0 (i.e. part a) is taken from Eq. (3),

(i6>

Eq. (lc) can be written as

»'<*> - 1"sin (?)d( • m
After substituting Eq. (15) into Eq. (17) and interchanging orders of integration, Eq.
(17) can be reduced to the following Fredholm integral equation of the second kind for
g'(x),

g'(x) - 4£ j° K(x, f)g'(t) dt = f(x) (18)

where the dimensionless kernel K(x, t) is given by

Tr( ~ I f° dk, + bk3 + £(dk2 + bkA) .. . . / ,
K(x, t) = (fl2 _ ty/2 ja   /ft, t) sin ^ -J dt.
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Knowing the function of the kernel K(x, t), the integral equation (18) may be solved
by numerical or other means for the function g'(x). The contact force P and the dis-
tribution of the contact pressure p(x) can be determined from [6]

p = E< f WWdt_ r <v'(t
*!) J-a (a2 -2(1 - vi) J.a {a2 - 0I,J ' (19)

_ w - X2)U2 r  gV) dt
P{ ) 2ir(l - v\) j-a (/ - x)(a2 - t2)U2

When the layer and the substrate are of same material, that is, Ex = E2 , v, = v3 ,
the problem is therefore reduced to a mixed boundary value problem of an elastic half-
space. All the Jc's defined in Eq. (16) vanish, and the kernel K is zero for all values of
x and t. Eq. (18) then gives g'(x) = /'(x) as it should.

The kernel K for the case that the substrate is rigid, i.e. 7 = 0, can be written in
the following reduced form:

K(x, t)
t

4(1 - „)(a' —^ifo ©(«)'(«, 0 "in
0({)

(l-»i)][-4(2yi —1)» sh { —16(1 — yi)2 chE-HS^i —6)£ ch ^+(4yi-6){sh {-2{» chfl-(5-6n){' sh {
i2+4^-4n+l-(4^,-3) ch2 £

The foregoing analysis is based on the assumptions that the surface contour f(x)
of the punch is symmetric and that the contact pressure p(x) is continuous and vanishes
at the edges of the contact region. If f(x) is not symmetric, the Fourier exponential
transform should be used in the derivation. For the case that p(x) does not vanish at
the edges, the relationship between <f> and g'(x) should assume the following general
form [6]

w r (a2 - ty/2g'(t) dt P 
Hz) ~ 4r(l - c?)(a2 - /)1/2 }-a t-z + 2ir(a2 - z2)1?2' (20)

III. The contact problem of two layered elastic bodies. In addition to the assump-
tions made in the preceding section, we shall further assume here that the radii of cur-
vature of both bodies are large in comparison with the dimensions of the area of contact
and therefore each of the bodies can be substituted by a semi-infinite plane (Fig. 2).

Using I and II as the subscripts pertaining to the upper body and the lower body
respectively, and 1 and 2 as used previously pertaining to the layer and the substrate,
it is possible to denote, for instance, E1U as the Young's modulus of the layer of the
lower body II, and v2i as the Poisson's ratio of the substrate of the upper body I. The
relationship between the derivatives of displacement at the area of contact can be
established as

dv11 , d&'ni _ dfn(x) _ dft(x) _ jr(x\ /2j\
dx dx dx dx

while the other boundary conditions have expressions similar to Eqs. (1) and (2).
Following the procedure used previously, we extend the layer of each contacting
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body to a half-plane, and denote the surface deformation of each fictitious half-plane
under the yet to be determined contact pressure p(x) by Qi(x) and g[r(x) respectively.
Then, if we again assume that both ji(x) and /n(:c) are symmetric functions and that
the contact pressure p(x) vanishes at the ends of the contact length, the actual surface
deformations ti„ , t>m of the layers can be expressed, respectively, in terms of the fictitious
surface deformation functions g,(x) and gn(x),

to1 = gl(x) ~ 7h lo Kl(x't)m dt'
, . " (22)
to1 = - 7h L MM dt'

where the kernels Kt and Ku are similar to K defined in Eq. (19) except that the ge-
ometrical and material constants should be changed accordingly.

Substitution of Eq. (22) into Eq. (21) yields,

g[(x) + gU(x, - 4t f [K&, t)g\(t) + Ku(x, t)g'u(t)) dt = f(x). (23)
ir n j o

Since the normal pressure acting on the upper body I along the area of contact
coincides with the normal pressure acting on the lower body II, and g,(x) and gu(x)
are the surface deformations in the contact region |x| < a of the half-planes with elastic
moduli En , vn and E1U , vlir , therefore, from Eq. (20), gt(x) and <7u(x) are related to
each other through the equation

<24)

Introducing a new fictitious function gc(x) defined as

gc( x) = gt(x) + gn(x), (25)

then, the substitution of Eqs. (24) and (25) into Eq. (23) again yield a Fredholm integral
equation of the second kind as follows

f [(1 - v\\)EluKx + (1 - ^u)EnKu)g'c(t) dt
g'c(x) — 2]7, 2 . ,1 , /1 "2 it = 1'(x) (26)

1(1 — vu)Ein + (1 — viu)h,u\h

while the contact pressure p(x) and the contact force P can be computed from

, , _   EuE,u(a2 - x2)'/2 f  g'c(0 dt 
V{x) ~ 2[(1 - v2n)Elu + (1 - ,?„)£„]tt S.a (t - x)(a2 - f)1/2 ' ( }

P = EUE1U r tg'(t) dt
2[(1 — vfi)EUX + (1 — v\u)Eu] J-a (a — t)

Appendix

(A) Evaluation of the Integral /(£, t) given in Eq. (11).

/(£, t) = j" T(z0 , t) cos £77 dy = Re j/i ^ ——5 jH1 cos £77 dt]|- (Al)
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Using the identity

cos £17 = + eV,f""), z0/h = r, - i, (A2)

we obtain, from Eqs. (Al), (A2)

/ = Re ^ /,} , (A3)

where the integrals Ii and I2 are given by

Ii = [ F(z)e~iMK) dz,
J S

h — ( F(z)eiU'm dz,
J S

/ 2 2\ 1/2
J?/~\     )
F® ~ f -z2 '

and S, as shown in Fig. 3, is the path along y — —h from x = — » to co.
By applying the complex residue theorem and Jordan's lemma, the integration of

J! and 72 can proceed as follows: (see Fig. 3)
(1) Within the close path formed of S and CV , the complex function F(z) is analytic

and F(z) —> 0 as |z| —> , therefore

(/ + / dz = °> f > °-

Since jCa. = 0 as R —> ®,we have

J, = f F(z)e~iH'/h) dz = 0, £ > 0. (A4)
J 3

(2) The function F(z)eiH'/h) is analytic and single valued inside the closed path
formed of S and CR ■. except at the branch cut, thus

(/ + J + fjF(z)e'!('/h) dz = 0, (A5)

where A is a closed contour surrounding the cut in the clockwise direction. Since

[ F(z)ettl'/ki dz = 0 as 22 -» ® ,
J C R ' '

we have

h = f F{z)eiM" dz = — [ F(z)eiH'm dz.
J S J A

By expanding into an infinite series and expressing F{z) as the sum of two partial
fractions, we obtain

h = ~{i:21 U-o., fc! J (A6)
where

2\ 1/2
// 2   2\ 1 /2(a g J; (z/h)h dz.



1967] ON THE CONTACT PROBLEM OF LAYERED ELASTIC BODIES 241

The complex integral Lk(t) around the branch cut can be intergrated by means of
the Cauchy integral theorem described in §110 of [6], i.e.

Lk(t0) = 2«{(a2 - 01/2(^)*

+ i(fc) ,h
1 (aY 1 • 1 -3 ••• (2k - 3) faY'
2 \t) 2-4-6 ••• 2k \tJ

where k' = k + 1 for k = odd integer or k' = k for k = even integer. Substituting the
expression for Lk(t) into Eq. (A6) and rearranging the terms, we obtain

h

where

" -T [«*' " 8i* (£ l) + ' £„ W (J 1 ■ (A7)

(tYk _ 1 / A2'"2 1-1-3 ••• (2k - 3)
* W 2 \a) 2-4-6- - - (2fc)

Since I2 is found to be pure real, we have, from Eqs. (A3), (A4) and (A7)

/ = = -f (a2 - f)w
   — sint

(B) Evaluation o/ the Integral H(£, t).

(A8)

//ft, /) = J S(z0 , t) cos£i) dt] = Im £ — /i2 F'(z0) cos £?? <ii7 J , J > 0. (A9)

Using Eq. (A2), we have

H = -(h/4) Im [e{//. + (A10)

where

Hi = f F'(z)e-ii(,/h) dz, ( > 0,
J S

H2 = [ F'(z)eil"/h) dz.
J S

Again, applying the complex integration along the closed contour formed by S and the
semicircle CB-, it can be found, similar to Eq. (A4), that Hi = 0. Integrating the integral
H2 by parts and using F(z) —* 0 as \z\ —* , yields

H2 = -i | f F(z)eiH,/h) dz = L . (All)

Finally, by combining Eqs. (A9), (A3) and (All), we obtain

H = ef Im /„ = {/. (A12)
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