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POINTWISE BOUNDS FOR SOLUTIONS OF A CLASS
OF FUNCTIONAL EQUATIONS*

BY

S. C. CHU1 (University of Delaware) and F. T. METCALF2 (University of California, Riverside)

I. Introduction. The purpose of this paper is to present an approach with which
one can, in a simple way, obtain point-wise bounds for solutions of certain types of
equations. Consider, for example, the linear Volterra integral equation of the second
kind

u(x) = j(x) + [ k(x,y)u(y) dy, 0 < x < 1, (1)
Jo

where, for simplicity, it is assumed that / is real and continuous on 0 < x < 1, and k is
real and continuous onO<j/<a:<l. The solution u, then, satisfies

|w0) - f(x) | < f | k(x, y)\-\u(y) \ dy, 0 < x < 1,
Jo

and hence,

|u(.r) - j(x)| < [ |k(x, y)\ M(y) dy, 0 < x < 1, (2)
Jo

where M(y) = sup0<z<„ \u(z)\. If, now, one can find an upper bound for M, in terms
of the given functions / and k, then (2) gives an upper bound for \u(x) — /(a;)|, and hence,
both upper and lower point-wise bounds for u.

It follows from (2) that

Mz)| < 1/(2)1 + M(z) I" Ik(z, y) \ dy, 0 < 2 < 1,
^0

and hence,

sup |w(s)| < sup |/(e)| + sup ,1/(2) f \k(z,y)\dy
0<z<x 0<z<x 0<2<x L Jo

This, in turn, gives

M{x) < Mfix) + M(x) sup [ |k(z, y) \ dy,
0<z<x JO

where Mf(x) = sup0<8<x |/(z)|. If, in addition, one assumes that

sup [ \k(z, y)\ dy < 1
0<z<x Jo

0 < x < 1.
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for 0 < x < 1, then

M(x) < M,(x) 1 - sup f \k(z, y) | dy
0<z<x JO

0 < x < 1.

Thus, the right-hand side of this last inequality serves as the desired upper bound for M,
and yields, upon substitution into (2),

f%X t»B I ~ 1

i(x) - f(x) I < / Ik(x, y) I M,(y) 1 - sup / |k(z, w)\dw dy,
Jo L o<2<v Jo J

(3)

for all 0 < x < 1. In order to avoid integration, the right-hand side of (3) may be
simplified by replacing the quantities

and

with

and

sup / |A'(2, w)| dw, 0 < y < x < 1,
0<t<v Jo

f \k(x, li)I dy, 0 < x < 1,
Jo

x sup \k(z, y)\, 0 < x < 1,
0<v<t<x

x sup |/c(.t, y)\, 0 < x < 1,
0<v<x

respectively (under the restriction, of course, that

x sup |k(z, y)\ < 1
0<V<2<!

for 0 < x < 1). The bound on \u{x) — j(x)\ would then become

|u(x) - i(x) | < xM,{x) sup \k(x, y) [ - [ 1 - z sup \k(z, 2/)|]-1, (4)
0<i/<x 0<v<g<x

for all 0 < x < 1.
The foregoing, then, gives point-wise bounds for the solution of Eq. (1) with very

little work. (This was also essentially the method used by Balachandran [1] to obtain
bounds for solutions of Fredholm integral equations of the second kind.) However,
it has the great disadvantage that one must assume that

sup / \k(z, y)\ dy < 1.
><z<l Jo

If this restriction on the kernel k is not satisfied, then what would normally have to
be done is to iterate Eq. (1) for a sufficiently large number of times, until some iterated
kernel satisfies that condition. But this procedure would involve finding the iterated
kernels, which, in general, is not easy. It is, therefore, desirable to find a method for
obtaining bounds of the type (3) or (4), which retains the simplicity of the procedure
described above, without performing iterations, and yet not requiring any restrictions
about the "size" of the kernel k.
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In Sec. 2, the foregoing simple procedure (together with the "size" restriction) is
stated in general terms, thereby, permitting application to other types of equations.
A way is then indicated for circumventing the "size" restriction for a certain class of
equations. In Sec. 3, this combined procedure is applied to various problems. Point-wise
bounds are obtained for solutions of integral equations, functional equations, and
functional-integral equations.

2. The method. The simple technique, briefly described in Sec. 1, can be put in
a more general form. Let S be a subset of the real numbers R. Let C be the class of
functions defined by

C — {v \ v : S ^ R, v continuous on S, supItS |u(x)| < » }.

(By continuity, here, is meant the usual "e, 5" definition; that is, v is continuous at
x £ S if, for every « > 0, there exists a 5 > 0 such that \x — y\ < S, y £ 3, implies
\v(x) — v(y)| < e. This definition permits S to have isolated points.) Consider the
functional equation

u(x) = f(x) + T(x) u(s), s £ S0(x))t x E S, (5)

where / £ C, S0(x) is a subset of S depending on x £ S, and T is a mapping taking S X C
into R, and is sometimes written T = T(x\ «(•))> for convenience. It is assumed that
the mapping T is such that, there exists a mapping T of S X C into R, satisfying:

(i) IT(x; m(-))| < T(x; M (•)) for all x £ S, u £ C;
(ii) ux £ C, u2 £ C, and 0 < m,(s) < u2(s) for s £ S0(x), imply T(x; Mi(-)) <

T{x; w2(-))> for all x £ S;
(iii) there exists a ^ £ C such that T(x] u(-)) < g(x) sup„es<,(1) u(y), for any u £ C

such that 0 < u(x), x £ S.

Let Si(x), x £ S, be a family of sets with the properties:

(iv) x £ S,(x) for all x £ S;
(v) S0(x) C S^x) C S for all x £ S;

(vi) Si(y) C Si(x) for each y £ S^x), x £ S;
(vii) u £ C, 0 < u(x) for all x £ S, imply v(x) = sup„eSl(j) u(y), x £ S, is in C.

Such sets certainly exist, since the set S itself has these properties. (The forms of both
S0(x) and (x), for specific problems, will be given in the applications of the next
section.)

Theorem 1. Suppose Eq. (5) possesses a solution u £ C. Suppose the mapping T is
such that there exists a T satisfying the conditions (i)-(iii) above, and, in addition,

sup g(y) < 1, jorallx £ S,
i£SiW

where Si (x), x £ S, is a family of sets satisfying (iv)-(vii). Then the function u has the point-
wise bounds given by

\u{x) - f(x)\ < t{x\ £/(•)). xES,
where

U(x) = sup |/(2/) |/(1 - sup g(y)), x £ S.
yes i(z) j/£ S i (i)
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Proof. Let

M(x) = sup \u(y)\

for x G S. Condition (iv) above gives that \u(x)\ < M(x) for each x G S. Hence, from
Eq. (5):

\u(x) - j(x)| < |T(x-u(-))\ < T(x; \u\ (•)), s G (6)

\u(x) - Kx)\ <f(x;M(-)), xGS, (7)
where use is made of condition (ii) and the fact that M G C (condition (vii)). Conditions
{v) and (vi) allow one to conclude that

M(s) < M(x), s G S0(x), x G S;
and this gives, using property (iii),

T(x; ML-)) < g(x) sup M(s) < g{x)M(x), x G S.
aGS oCx)

Inequality (7) then yields, for every iGS,

\u(x) | < \j(x) | + g(x)M(x).
Therefore, upon taking the supremum of both sides (over the set S,(x)), and noting
that condition (vi) gives sup„,s,(:r) M(y) < M(x), one obtains

M(x) < sup !/(?/) | + M(x) sup g(y), x G S,
yES i(x) yG»S»(x)

which may be solved for M(x):
sup |/(2/) |

M(x) < v€S-(x) t- = U(x), xES.
1 - sup g(y)

uE S i (x)

This, together with (7), gives the desired result, after noting that U £ C.
Remarks. At the expense of "iterating" the mapping T, one can obtain a sequence

of decreasing upper bounds in the following manner. Let

Un+i(x) = \j(x)\ + f(x; [/„(•))> *G£,

for » = 0, 1, 2, • • • , where U0 = U. It follows from the result of Theorem 1 that

|«(s)| < l/WI + f(x; £'(•)) = Ut(x), xES.
Hence, from (G), one has

\u(x) - j(x)\ < T(x; 17,(0). s.
By induction, it readily follows that

|u(x) - /(a-)| < T(x; Un(-)), x G S,

for n = 0, 1, 2, • • • . Furthermore,

U,(x) < |/(.r) | + l\x- U(x)(-))

< [/(a?) | + U(x)g(x)

< sup |/(2/) | + U(x) sup g(y),
pESi(r) t/ESi(x)
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for all x £ S, where

U(x) = sup U(s)
sE S0 (x)

= sup [ sup 1/(2/) |-1/(1 - sup g(y))]
aES0(,x) yEStla) kGS,{.)

< sup l/(z/) I -1/(1 - sup g(y)) = U(x),
v€Si(x) yGS i (ar)

for all x £ S; and hence,

L\(x) < sup |/(?/) | + U{x) sup g(y) = U(x),
yESx(x) yESi(x)

for all x £ S. Induction may now be used to give

Un+1(x) < U„(x), x £ S,

for each n = 0, 1, 2, • • • .
Although, for simplicity, Theorem 1 was stated for functions of class C, similar

results, by analogous reasoning, can be obtained for other function classes. Balachandran
[11, for example, applied the same type of reasoning to the specific problem of finding
point-wise bounds for functions which are square-integrable and which satisfy linear
Fredholm integral equations of the second kind.

Theorem 1, then, provides a very simple method for obtaining point-wise bounds
for solutions of equations of the type (5). It has the disadvantage, however, that the
mapping T must be such that

sup g(y) < 1,
yeSi(.x)

for all x £ S; that is, the "size" of T is restricted.
A way will now be indicated, whereby, for certain types of equations, the "size"

restriction can be circumvented and yet the simple procedure described above can be
retained. This is accomplished by, essentially, a change of the dependent variable.
Let K be a linear, invertible mapping of C into C; suppose K is order-preserving in
the sense that 0 < u(x), x £ S, implies that 0 < Ku(x). Then, if u is a solution of Eq. (5),
u must satisfy

KK'Mx) = f(x) + T(x; KK~'u(s), s £ Su(x)), x £ S.
Define v(z) = K~lu(x) for x £ S. Then v satisfies

t'(.r) = IC'/(.r) + K"T(x; ICv(s),s £ S0(x)), x £ S;

i.e., v satisfies the equation

v(x) = /.(.r) + r.fo »(•)), x £ s,
where f1 = K ' j and T^x) v(-)) = K~'T(x; Kv(-)) for all x £ S. For certain equations,
with a suitable choice of K, the mapping 1\ may satisfy all the hypotheses of Theorem 1,
although the original mapping T may not. In such cases, one merely obtains first the
point-wise bounds for the function v, and then makes the substitution u = Kv. The
order-preserving feature of K will then yield point-wise bounds for the function u.
This approach will now be made clearer by means of the following applications.



446 S. C. CHU AND F. T. METCALF [Vol. XXV, No. 4

3. Applications.
(a) Volterra Integral Equations of the Second Kind. Consider, again, Eq. (1). In

this case S — [0, 1], S0(x) = Si(x) — [0, x],

T(x;u(•)) = f k(x, y)u(y) dy,
Jo

o < x < 1,

T(x;u(-)) = [ |k(x, y)\ u{y) dy, 0 < x < 1,
Jo

and

g(x) = [ |k(x, j/)| dy, 0 < x < 1.
Jo

A direct application of Theorem 1 would, as noted in Sec. 1, yield bounds for the solution
u, provided that the kernel satisfies the restriction

sup f \k(z, y) | dy
Jo

< 1.

If the kernel k does not satisfy this condition, then one may consider, instead, the
equation satisfied by the function v(x) — K~lu{x) = e~Xzu(x), 0 < x < 1, where X > 0;
that is, the equation

v(x) = j(x)e Xl + e Xl f k(x, y)e>"'v(y) dy, 0 < x < 1. (8)
J 0

Setting

fi(x;v(-)) = e~Xx [ |k(x, y)\ e""v(li) dy, 0 < x < 1,
Jo

one has that f, satisfies the "size" hypothesis of Theorem 1, provided

sup e~u [ |k(z, y) | ex" dy < 1.
0<*£1 J 0

But this condition is automatically satisfied for X sufficiently large, since, for 0 < z < lr

X* f \k(z, y)\ ex" dy < e~y' [ ex" dy sup \k(z,y)\
Jo Jo OZvZm

e x'

< —■ sup \k(z,y)\
A 0<y^*^l

< ~ r~— sup |k(z, y)\ < 1,

for all X such that

sup |k(z, y)| < X _x-
o<k<«<i 1 — e

Hence, application of Theorem 1 yields

\v(x) - j{x)e~Xl| < e_Xx [' |k(x, y)\ eXvV(y) dy, 0 < x < 1,
Jo
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where
sup |/(z) I e~x*

V(y) =    . 0 < y < 1. (9)
1 — sup e~x' I \k(z,t)\eu dt

0<z<v Jo

Recalling that u(x) = v(x)eXz, one obtains the following:

Theorem 2. Let f and k be real and continuous on 0 < x < 1 and 0 < y < x < 1,
respectively. Let ube a real and continuous solution of the equation

u(x) = fix) -f- / k(x, y)u(y) dy, 0 < x < 1.
J 0

Then,

|u(x) - j(x) I < f Ik(x, y) I ev V(y) dy, 0 < x < 1,
Jo

where V is defined by (9),

X = 0, if sup [ |k(z, y)\ dy < 1,
0<2 < 1 «^0

and X satisfies

> sup \k(z,y)\, ii sup / \k(z, y)\ dy > 1.sup \k(z,y)\, if sup [ \k(z, y)\ dy
<!/< z < 1 0<z < 1 JO"t — X1 — e o

Remarks. It is clear that a better estimate for u can be obtained by, instead
of bounding the quantity |u(z) — f(x)|, bounding the quantity

i(x) - f(x) - f k(x, y)f(y) dy - •■■ - [ kn(x, y)f(y) dy
Jo Jo

for some positive integer n, where k, (i = 1, • • • , n) is the ith iterated kernel. However,
this procedure involves iterated integration, and the main purpose in this paper is to
give a simple and quick way of obtaining point-wise bounds, without any repeated
integration.

The procedure applies equally well if one considers the space of square-integrable
functions instead of the continuous functions, even though Theorem 1 cannot be directly
applied. For the square-integrable case, again consider the associated equation for v,
namely, Eq. (8). Then, by applying a computation procedure similar to that used by
Balachandran [1] for Fredholm equations, one obtains the estimate

1/2 b(x) + [&2(z) — a(x)c(x)]W2
a(x)|w(x) - fix) | < [ e"x"k2(x, y) dy

-J 0

for 0 < x < 1, where

a(x) = 1 - [ [ k\y, z)e~2Uv~') dz dy,
J 0 ^0

m = £ (/' k(y, 2)/(2/)<f dy)' dz

c(x) = f f(z)e~2>" dz,
''o

and X is chosen such that a{x) > 0 for all 0 < x < 1.
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It may be observed here that, in both the continuous case and the squarc-integrable
case, the above bounds yield, immediately, the uniqueness of a solution to Eq. (1),
since if Ui and u2 are solutions of (1), then — u2 is a solution of (1) with / = 0.

Finally, it should be remarked that the method described here can be applied to
certain nonlinear equations (where the integral is of the form

/ k(x, y, u(y)) dy,
Jo

with k satisfying some kind of Lipschitz condition), to systems of equations of the
type (1) or their nonlinear analogues, to equations (and systems) in several variables
of the form

u(x, y) = f(x, y) + f k,(x, y; z)u(z, y) dz
Jo

t*V i*v

+ / k2(x, y, z)u(x, z)dz+ / lc3(x, y; z, , z2)u(zl , z2) dzx dz2 ,
Jo Jo J 0

and to certain nonlinear versions of such.

(b) Functional Equations. Consider the functional equation

u(x) = f(x) + g(x)u(a(x)), 0 < x < 1, (10)

where /, g, and a are real and continuous on 0 < x < 1; a(0) = 0, 0 < a(x) < x for
0 < x < 1; and \g(0)\ < 1. Under these circumstances one has the existence of a con-
tinuous solution u, see, for example, Chu and Diaz [2], In this case, one may take
S = [0, 1], S0(x) = |a(a:)}, <S,(x) = [0, x], T(x, u(ot(x))) = g(x)u(a(x)), and K~lu(x) =
e~Xxu(x), for 0 < x < 1 and X > 0. Then, the function v(x) = e~x*u(x) satisfies the
equation

v(x) = e~Xrf{x) + g(x) exp ( — \(x — a(x)))v(a(x)), 0 < x < 1.

Theorem 1 can be applied to obtain a bound on v, provided that

sup |g{y) exp (-\{y - a(y)))\ <1, 0 < x < 1.
0<v<x

But, for X sufficiently large, this is indeed the case. Since g is continuous and Iff (0) | < 1,
there exists a 0 < 8 < 1 such that, for 0 < x < 8, one has

|g(x) exp (-\(x - a(z)))| < 1, (11)

for any X ® 0. For 8 < x < 1, the quantity \g(x) exp ( —X(a: — a(z)))| can be made as
small as desired by simply choosing X sufficiently large. In particular, let m =
mins<a<i {y — a(y)), and choose X such that

X > ~~ log [sup |fif(?/)|].
ill 0< j/< 1

For such a choice of X, one has (11) for all 0 < x < 1; hence, application of Theorem 1
yields

\v{x) - /(.i')e~Xl| < |g(a:)| exp {-\(x - a(x)))F(a(a:)), 0 < x < 1,
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"where
sup |/(z/)e_XK |

V(z) = i fff 7—\7 • 0 < « < 1. (12)1 - sup |g{y) exp (~X(y - «(</))) |
0<v<2

Recalling that u(x) = v(x)elx, one obtains:

Theorem 3. Let f, g, and a be real and continuous on the interval 0 < x < 1. Suppose
that a(0) = 0 and 0 < a(x) < x for 0 < x < 1; assume also that |<?(0)| < 1. Let ube a real
and continuous solution of the equation

u(x) = j(x) + g(x)u(a(x)), 0 < x < 1.
Then

\u(x) - 1(x)\ < \g(x) | f"wV(a(x)), 0<x< I,

where V is defined by (12),

X = 0, if sup \g{y)\ < 1,

and X satisfies

X > — log [sup |s(2/)|], if sup \g(y)\>l.
Ill 0<V<1 0< y< 1

Again, this bound yields, immediately, the uniqueness of a solution to Eq. (10).
(c) Functional-integral Equations. As a further illustration of the procedure given

above, one can consider a linear combination of the operators defined by the two
preceding examples. Namely, consider the functional-integral equation

u(x) = /(x) + g(x)u(a(x)) + [ k(x, y)u(y) dy, 0 < x < 1, (13)
Jo

where /, g, and a are as in example (b), and k is real and continuous on 0 < y < x < 1.
In this case, one may take S = [0, 1], S0(x) = Si(x) = [0, a;], and

T(x-,u(s), s E S0(x)) = g(x)u(a(x)) + f k(x, y)u(y) dy,
Jo

for all 0 < x < 1. Again, consider the equation satisfied by the function defined by
v(x) = K~lu(x) = e~Xxu(x), 0 < x < 1, where u is assumed to be a solution of (13)
and 0 < X. That is,

v(x) = f,(x) + I\(x;v(s), s E S„(x)), 0 < x < 1,

where fi (x) = e~*zf(x) and

Ti(x;v(-)) = g(x) exp (—X(z — a(a-)))i'(a(a-)) + e~Xl f k(x, y)e"v(y) dy,
Jo

for all 0 < x < 1.
The mapping Tx will satisfy the "size" restriction of Theorem 1 if X is chosen so

large that

\g{x) | • exp ( —X(z - a (a;))) + sup \k(x, y) |--—— < 1 (14)
0<v<x A
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for all 0 < x < 1. It is clear that this condition can be satisfied for all X sufficiently-
large. A condition which is sufficient for (14) to hold will now be derived. Let p be such
that |(7(0)| < p < 1; let 5 be such that 0 < 8 < 1 and

\g(%)I • exp (-\(x - 0t(x))) < P

for all 0 < x < 8] and let m = minj<uS1 (y — a{y)). Suppose X satisfies

X > max — log
m

sup \g{y)\
a<v<\ 

P

(1) Then, for 0 < x < 8, one has

— sup \k(x,y)\
1 P 0<v<z<1

(15)

1 - e~Xl
|^(a;)|-exp (~\(x - a(x))) + sup \k(x, y)\-—   < p + ( sup |fc(z, y)|)/X < 1,

0<v£x A 0^v£*<l

as desired.
(2) Next, if 8 < x < 1, then

1 — e"Xl
ld(x)I'exp ( X(.t - a(x))) + sup |k(x, y)\   

0<y<x ^

< sup |ff(2/)| •e_x"' + ( sup Ik(z, y)\)/\ < p + ( sup \k(z, y)\)/\ < 1,
o<v<i o^v£*<i

which shows (15) to be the desired sufficient condition for (14) to hold.
If X is such that (14) holds for all 0 < x < L, then Theorem 1 may be applied, to

obtain

\v(x) - /,(x)| < \g{x)\ exp (-\(x - a(x)))V(a(x)) + e~x* f \k(x, y) \ ex"F(i/) dy,
Jo

0 < x < 1,

where

sup |/(2/)e"x"|
V(x) = 0<V<x

1 — sup \g(y)I exp (~\(y - a(y))) + e x" ̂  |k(y, z)\ e" dz j
(16)

for 0 < x < 1. Upon recalling that u{x) = v(x)e x, 0 < x < 1, one obtains:

Theorem 4. Let /, g, a, and k be as specified above. Then, if a continuous solution
u of Eq. (13) exists, it must satisfy, for all 0 < x < 1:

|u(z) - f(x)| < 1^)1 ex°(I)F(«(.T)) + f |k(x, y)| e*>V(y) dy,
Jo

where V is defined by (16),

\g(,y)\ + Jo Ik(y, z)I dz^
and \ satisfies (15) [a fortiori (14)] otherwise.

X = 0, if sup
0<y< 1

< 1,
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As before, the bound yields the uniqueness of a solution to Eq. (13). Finally, it
should be mentioned that systems of the type (10) and (13) arise in the theory of certain
boundary value problems for hyperbolic partial differential equations; see, for example,
Picard [3], Chu and Diaz [2], and Chu [4].
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