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SUB- AND SUPERHARMONIC SYNCHRONIZATION IN WEAKLY
NONLINEAR SYSTEMS:

INTEGRAL CONSTRAINTS AND DUALITY*

BY

SAMUEL A. MUSA (University of Pennsylvania)
AND

RICHARD E. KRONAUER (Harvard University)

Abstract. A forced system described by the differential equation:

x" + ef(x, x') + ulx = F cos iot

is considered for cases where (n/m)u is close to w0 . (Here m and n are integers and
n/m > 1 denotes superharmonic while n/m < 1 denotes subharmonics.) If the unforced
system (F = 0) is conservative, the forced system is shown to possess an integral con-
straint and the solution is reduced to quadratures, even though the force adds or removes
energy from the oscillations. Furthermore, the sub- and superharmonic cases where the
n/m ratios are inverse are shown to be intimately related, and results for one can be de-
duced from the other by appropriate interchange of variables.

For systems which are nonconservative (when F = 0), there is a general class, in-
cluding the frequently discussed Van der Pol oscillator, whose members are mathematical
duals of appropriate conservative systems with added linear dissipation. Both the non-
conservative system and its "conservative" dual are forced. The duality consists of an
interchange of the roles of the dissipation and detuning between the systems and yields
a pair of phase portraits with singularities located at identical points and orthogonal
phase trajectories.

Examples for polynomial nonlinearities are given and in considerable detail for
the power 5.

1. Introduction. In a previous paper [1] the exchange of energy between oscillations
in weakly-nonlinear systems was investigated. Two integral constraints on the amplitude
and phase variation of the oscillations of an autonomous multi-degree of freedom system
were obtained. One was the anticipated constancy of the system energy. The other was
related to the exchange of energy between the oscillatory modes. In this paper, we shall
consider a single degree of freedom conservative system driven externally by a sinusoidal
force. We first will show that an integral constraint, similar to the second one described
above, exists for oscillations in this system with frequencies that are fractions (sub-
harmonics) or multiples (superharmonics) of the driving frequency even though the
external force supplies or removes energy.

Next, we will consider a class of nonconservative systems (which include the fre-
quently-discussed Van der Pol oscillator) subject to external driving, and show that
such systems are mathematical duals of driven conservative systems (such as the Duffing
equation). By interchanging the roles of the damping and the detuning, the two systems
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of Engineering and Applied Physics, Harvard University.



400 SAMUEL A. MUSA AND RICHARD E. KRONAUER [Vol. XXV, No. 4

are shown to have the same synchronous (steady state) characteristics. Furthermore,
the phase plane trajectories (transient state), where the phase plane coordinates are
phase and log amplitude of the subharmonic or superharmonic oscillations, of the related
dual systems are orthogonal. Previous writers [2] to [6] have considered examples of the
conservative and nonconservative cases separately and have not observed the duality.

Finally, a relationship between subharmonics and superharmonics in a forced con-
servative system is developed. By appropriate interchanges of the amplitudes, phases
and frequencies of the response components (sub- or superharmonic and the oscillation
at the driving frequency), a complementary solution is obtained, the subharmonic in
the original becoming a superharmonic or vice versa.

2. Lagrangian formulation. Consider a conservative single-degree of freedom system
possessing the Lagrangian:

L(x, x') = h(x'Y — %w0x2 + el(x, x'), ( ' = d/dt), e « 1 (1)

where I represents the effects of the nonlinearity.
The differential equation which we will be considering throughout this paper will

be restricted to the form

x" -f calx = —tf(x, x') + F cos ut (2)

where / is a general nonlinear function and F cos ut is the external driving force. Since /
may not contain x" and since / = (d/dt) (dl/dx') — 81/dx for the conservative system, it
follows that I must be linear in x' and so in fact, in the conservative case, / reduces to
a function of x only. To make sections of the analysis applicable later to nonconservative
systems, both arguments of / will however be retained.

We shall examine (2) for the existence of synchronized subharmonic or superharmonic
oscillations; that is, for steady-state solutions which contain major components at a
frequency (n/m)to. Here n and m are integers in lowest terms and n < m denotes the
subharmonic case. The physically interesting case is when the subharmonic or super-
harmonic is of order unity (rather than 0(e) or higher) and the analysis is focused on
these. By substituting:

F
x = y — S cos ut; S = 7-5 —57 = 0(1) (3)

(to co0)

and

67 = (n2/m2)u — wo

into (2), we obtain:

y" + (n /rn)uy = —t[j(y — S cos wt, y' + Sw sin ut) — yy], (4)

The solution of this nonautonomous differential equation may be represented by an
asymptotic expansion, according to [7], involving two time variables:

y{t, T, e) = y0(t, t) + eyi(t, t) + t2y2(t, r) + • • • (5)

where r = et is the slow time scale. The variables t and r are treated as independent.
Further expansion of r and co„ in « is necessary in order to obtain uniformly valid
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second and higher order approximations. Following the analysis in [8] and [9], upon
substitution of (5) into (4) and collection of terms of like order of e, we obtain:

e° terms: d2ya/dt2 + (n/m2)a2y0 = 0, (6)

e terms: d2yl/dt2 + (n2/m2)a2y1

= ~1(Vo — S cos at, dy0/dt + Sa sin at) + yy0 — 2 d2y0/dt dr. (7)

The solution of (6) is of the form:

Vo(t, t) = R(t) cos [(n/m)at + 4>(t)]. (8)

This solution is then substituted into the right-hand side of (7) and the secular terms
are suppressed by eliminating terms that contain sin [(n/m) at + <t>] and cos [(n/m) at +

n n dR
l — a

m dr

m dr

l(y0 — s COS at, + Sa sin atj

j(yo — s cos at, ^ + Sa sin atj

(9)
iin[ (n/m) u t +$] terms

— yR. (10)
cos [ (n/m) +<f>] terms

The notation [/]{sin [(n/m)at + <£]; cos [(n/m)at + <£]j terms implies (a/irm) f20mr/"
[/] [sin [(n/m)at + tp]; cos [(n/m)at + <f>]} dt, where r is held constant during the integration.

The right-hand sides of Eqs. (9) and (10) are functions of R, <j> and S, the latter being
specified through (3). The simultaneous solution of (9) and (10) yields the transient
behavior of y0 . The singular points of these equations represent all synchronized solu-
tions. These points are located at the common roots of (9) and (10) or:

[/]sin[( n/m)wt+<t>] 0, (11)

['/] coa [ (n/m) « t +<p 1 yR .

A necessary condition for synchronization is that either expression of (11) contain
(j> explicitly. Using this idea, a procedure was developed, in [8] or [9], for determining
whether a given nonlinearity can produce a particular synchronized oscillation. Terms
of the right hand sides of (9) or (10) which contain <f> will be called synchronous terms.

The equation set (9) and (10) can be shown to possess an integral constraint. First,
consider the average of the incremental Lagrangian over one period of the "fast" time
variable:

p2mw / a)

^'^) = £J0 l^x')dL (12)

The R and <p are held constant for the integration since they are functions of r.
Now let us consider the slow variation of the integral (12):

dl* dl* dR dl* d(f>
dr dR dr d<{> dr ' „n

(loj
a [dR rmir/" (dl dx dl dx'\ deb f2""/u (dl dx dl dx'\ 1

2vnv \dr Jo \dx dR + dx' dRJ + dr J0 \dx d<j> + dx d<t> J J'
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The derivatives dx/dR, dx/dcfr, dx'/dR, dx'/d<j> are found from

x = R cos (— ut + d>) — S cosut,
\m /

71 (71 \
x' = uR sin (— ut + (b I + Su sin ut + e(• • •)m \m I

and the expression (13), for zero order terms, becomes:

(14)

dP = _co_ IdR
dr 2irm Idr /. [Scosfe"< + *) +

d [iJ . /» \ n dl (n . , ,
— R -j- / t- sin I ~ ut + 4> I i co —j cos I — ut + <£dr Jo Ldx \m / m dx \m

Now let us examine the expressions (9) and (10) using the definition

4 — A (^L
dt \dx) dx '

0n dR u f2'm/"[d(dl\ dl~] . (n
2— co -j- = — / t: (7-7) — 7- sin I — co* + I dt,m dr irm J0 L dt \dx / dxA \m /

dt

dt). (15)

2 - „s f _ r■" r * (f\ _ |fi cos (»„«+a dt
m dr vm Jo Ldt \dx / dxj \m /

The operation d/dt implies d/dt + t(d/dr), and the second term is neglected since it is
of a higher order. A parts integration performed on the first term of (9) or (10) yields:

n dR co f2irm/" f n dl In , \ dl . (n \~| , . .
2 — co -7- = —— / — co —7 cos I — ut + cf> I + — sin I — ut + </> I c«, (16)

m dr rrm Jo Lm dx \m / drc \m /J

n co ft* /<9Z ■ (n , , \ dl (n , , \] 7 „2 — uR -j- = —■ / — 7sin ( — coi + 0l — — cos ( — coJ + <£) dt — yR. (17)m ar -7r?n J0 Ldt \dx \m ) dx \m / J

Substitution of (16) and (17) into (15) then gives:

~ (2 — uR ̂  + J fl) + R ̂  (2 - co = -\R^p- (18)dr dr \ m dr 2 / rfr \ m dr/ 2 dr

Therefore,

\j/{R,<t>) = l*(R,<£) + = constant (19)

is an integral constraint on the R and <J> variables due to the conservative nature of the
system. A similar integral constraint was obtained in [1] in an investigation of the free
oscillations in conservative quasi-linear systems with multiple degrees of freedom.
It is interesting to observe from (19) and (16) that:

and from (19) and (17):

^ = 2 - uR ~ (20)
dcf> m dr

II--2 (21)dR m dr
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Therefore, it follows that:
a F ^p"l a I AA*

(22)
_d_
dR

dR
dT d<f>ufOT

The expression (22) presents a relationship between the contributions of the nonlinearity
(i.e., perturbation Lagrangian) to the variations in the amplitude and phase of the
subharmonic or superharmonic oscillation.

3. Duality between a system with conservative nonlinearity and one with noncon-
servative nonlinearity. Consider now a system described by (2) where the force f(x, x')
consists of a nonlinear conservative part, g{x) and a linear dissipative part Six' (i.e., a
Duffing type of system). Following the procedure outlined in section 2, the amplitude
and phase of the oscillation R cos [(n/m)ut + 4>] satisfy the following differential equa-
tions:

n n dR
I   CO —- =

m St

m (It

(ii cos wt + <pj — S COS O)t

g{ll cos ^ cat + — S cos ut^J

--O0R, (23)
sin[ (n/m)(ot+^>] terms

- yR. (24)
co8[(n/m)ajt +$] terms

The subharmonic or superharmonic characteristics in the steady and transient states
are determined from the trajectories of (23) and (24) in the R — <f> plane, and in particular
from the singular points and their stability.

Next let us consider a second system with a force j(x, x') given by

j(x, x') — T(dg/dx)x' — xx'

where g{x) is the same nonlinear function as above, but here however the term incorpora-
ting it is nonconservative. The term xx' is a negative damping, and the system is of
the Van der Pol type. The function / may be rewritten

f(x, x') = T dg/dt - xx'

where the operator (d/dt) may be interpreted again as d/dt + td/dr, and T is a time
constant. The amplitude and phase of the oscillation R cos [('n/m)ut + 0] in such a
system satisfy:

n dR _
Z — co = 1

m cit

2 — toR^ = T
m CLt

g^R cos wt + <pj — S cos ut^j

j^R cos wt + — S cos cotj

71

+ l"XR, (25)sin[ («/»») a t +<t>] terms

- nR (26)
cos I (n/m) u|+^]terras

where n — (l/e)[(n2/m2)w2 — w„] represents the detuning just as 7 does in (24). A parts
integration in the "fast" variable of the first term on the right-hand sides of (25) and
(26) yields:

0 n dR 11 rrZ — w ~r~   ail
m dr m

»„y
m dr m

g^R cos wt + — S cos coZ

g(^R cos wt + <pj — S cos

+ Z-uxR, (27)
-cos[(n/m)o)t+0]terms

- tiR. (28)
siri[ (n/m) u t + ^ ] terms
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A comparison of (23), (24) and (27), (28) shows that if

| = 7, (29)

[m/(jiM)]'ti/T = 13. (30)
Then

onservative — [•R(tf<£/tf/2)]nonc0n.erv.tive • (31)

The relationships (29) and (30) imply that the damping and detuning in one system
are equivalent to the detuning and damping respectively in the other system.

The expression (31) indicates that for equivalent, or "dual" systems, integral curves
(transient state) of both systems are in fact orthogonal in a phase plane whose coordinates
are log R and 4>. In the orthogonal transformation of integral curves, a saddle type of
singularity remains a saddle but with a shift in orientation. A center becomes a node
while foci transform into other foci or nodes.

4. Relationship between subharmonics and superharmonics for conservative
systems. Consider the expression (14). If we let:

71 7TI
Co,t = "— cot -(- <A; d>i   d>,

m n

R1 = -S; /S, = -R.
(32)

Then (14) becomes:
(Tfl

— wj + <t> 1 ),71 (33)

7YI . ( Tfl \
x' = +wi<Si sin to,/ uJRi sin I — co,/ + <f>l J + «(•••)•

71 \7l /

The expressions (33) describe another oscillation which is complementary to the original
one: superharmonic if the original is subharmonic and vice versa. According to our con-
ventions, the frequency of the R component of x is close to the linear resonance frequency
of the system. Therefore in the original oscillation co = (m/n)u0 while in the complemen-
tary oscillation = (n/m) o>0 . The force required to produce the <Si component at the
driving frequency in the complementary oscillation is given by Ft = (co? — co^).

Assume now that for the specified conservative nonlinearity and is formed from
(12) for the complementary oscillation. This must, of course, be identical with I* for
the original oscillation provided the arguments are altered:

Wi, s, ,*,)}„/, = W-s,, -Ri, -S*>)r • (34)
I. \ Tfl / J n/m

That is, if I* is known for an oscillation with a given n/m, it can be found for the comple-
mentary oscillation simply by exchanging the R, S and 4> variables according to (32).
A comparison may also be made between the forms which (20) takes for the original and
complementary oscillations:

9 K dR dl*
2uji ^ = "77"-dr d<t> (35)

0 D 'JR.i _ dI* _ ___n dl*
" 1 dr dcpi m d<t>
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Thus the equation for Rl can be simply derived from the It equation by the interchange
of variables and multiplication by —n/m. The same is not true for equation (21), since to
form dl*1/dR1 requires dl*/dS which is different from dl*/dR.

5. Example: Generalized Duffing equation. To illustrate the foregoing generalities,
we will consider a particular kind of conservative nonlinearity, f(x, x') = x", where p
is odd. It has been shown ([8] or [9]) that only certain subharmonics or superharmonics
can be sustained by such a function (in an analysis which is limited to terms of order e).
The underlying concept is that for synchronization to be possible, the right sides of
either (9) or (10) must contain </> explicitly. Without repeating details, the result for
p = odd is

m p + I — u — 2v , , „ o— =    where u = 1,2,3, • •• p;
v - n 1 9 ... ~ for u odd-

' ' \(p — u — l)/2 for u even.
When p = 9, for example, the formula yields a table:

u m/n u m/n

1 9/1,7/1,5/1,3/1,1/1 6 4/6,2/6

2 8/2, 6/2, 4/2, 2/2 7 3/7, 1/7

3 7/3, 5/3, 3/3, 1/3 8 2/8
4 6/4,4/4,2/4 9 1/9.

5 5/5, 3/5, 1/5
As we would expect from the result of the previous section, for every m/n there is a
corresponding n/m. Note that the ratio f when reduced to lowest terms becomes f ,
which is a repeat of an earlier entry. This repetition is not without significance, and for
future purposes we will note that for p — 9 there are two values of m (3 and 6) which
give rise to a subharmonic of order -J. Since any ratio in the table is constrained by
m + n<p+l>it follows that repetitions occur only for large p.

For / = xv,
„V+ 1

if

p + 1
and J* given by (12) is (see [8] for details):

(36)

where

and

l*(R, S, 0) = -R £ — C'iJR, S) cos met, - f B(R, S) dR (37)
m m J

I (p-1)/2 7->j>-2fc &2k

B(R, s) = E T-—Z \ / 7 \  (38)

i (p-m)/2 / -|\2A- + 1 rjp-2A- + l rf2A + l

C...-gk X 7 ,w '-11—-77-^ T7-T- (39)
*-• (t _ , (t + «±Jt) 1 , (£±J» _ i),

k > (n - l)/2
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with m = odd, or
= p!_ 72 mRv~2kS2k 

m •n op- 1 / >
t-0 -s)'(*+s).(^f^-*>('±f±i-*)i' (40)

A: > n/2
with m even. The summation over m in (37) means over all m relevant to the chosen
subharmonic and p. (That is, m = 3, 6 for the example cited above.) In the coefficient
Cm,„ the value of n associated with each m is the one which preserves the ratio at the
specified value. If p is small the sum reduces to a single term. It is also interesting to
note that if the signs of t and <f> are both changed in the integrand of (12) the integrand
itself remains unchanged. Since changing the sign of t cannot alter the value of I* it
follows that I* must be an even function of </>, as (37) shows.

If linear damping, tfix', is added to the system so that j(x, x') = xv + fix', the ampli-
tude and phase of the subharmonic or superharmonic oscillation must satisfy:

2 ^ co ~ = £ Cl.n{R, S) sin m4>-~ to0R, (41)
m ar „ m

where

2-coR^r = ^Dvm n(R, S) cos mcf, + B(R, S) - yR (42)
m. cLt m

Dl.n(R, S) =~jf{ VtClJR, S)]. (43)

These expressions will be used for the special case p = 5 in the next section.
6. Subharmonics and superharmonics for the Duffing equation of degree five. It is

instructive to consider in detail the case p = 5. The formula cited in the previous section
shows there to be three possible subharmonics, m/n = f, f, f. There are no repeated
pairs of m and n which give the same ratio, so the summations in (41) and (42) reduce
to a single term for each subharmonic. Equilibrium synchronized solutions are given by
dR/dr — 0 and d<t>/dr — 0 or

CI „(R, S) sin m<t> - — wpR = 0,m (44)

D*m.n(R, S) cos m4> + B(R, S) - yR = 0.

Independent of the value of m, the functions B(R, S), C'm,„(R, S) and Dpm,n(R, S) are
homogeneous polynomials in the R and S variables of degree p with exponent increments
of 2. This suggests that the Eqs. (44) be divided by yR and new variables be introduced:

X,,. -(-rr,-J. t)', ' («)
so that (44) simplifies to

sin tn<f> — a — 0, „cos m<j> + p — 1 = 0 (46)
R UK

where the arguments of all functions are Xn/m and Y„/m .



1968] SUB- AND SUPERHARMONIC SYNCHRONIZATION 407

In the absence of dissipation, /3 = 0 = a, and the equilibrium solutions are given
simply by

sin m<t> = 0, = ±(1 - B/R). (47)K

The solution of these equations is displayed in Fig. 1. It should be noted that X,/m = 0
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is always a solution to (46) so that at any value of Yn/m there are either one or three
possible values of Xn/m . If dissipation is included we find a family of curves for values
of a > 0, as shown in Fig. 2 for n/m = There is a maximum value of a for which
the curve shrinks to a point, and for larger dissipation the subharmonic cannot be
sustained.

With the equilibrium points of (41) and (42) in hand we can proceed to analyze
other features of the phase portrait of these equations. The stability of equilibrium can
be studied by linearizing (41) and (42) about the equilibrium point in question (S and
03 are held fixed while Ii and cj> assume small increments). This analysis is given in [8]
and will be omitted here. The result is that all of the points above the locus of vertical
tangents in Fig. 2 are stable foci or nodes, while those below are saddles. For selected
values of Yn/„ and a of Fig. 2 we have the phase portraits of Fig. 3. In the case a = 0
(no dissipation) the points A and D of Fig. 2 are the center and saddle, respectively of
Fig. 3a. Note that in this limiting case no real synchronization is possible and the sub-
harmonic oscillation is either:

(a) above equilibrium amplitude with continually increasing phase,
(b) below equilibrium amplitude with continually decreasing phase,
(c) near equilibrium amplitude with oscillating phase and amplitude.

For a > 0 the points B and C of Fig. 2 are the focus and saddle of Fig. 3b. Any initial
conditions lying in the shaded regions will lead to synchronization at the J subharmonic.
This subharmonic is "hard excited" since no small initial disturbances will lead to
synchronization. All initial conditions outside the shaded regions lead ultimately to
zero amplitude subharmonic—or pure harmonic oscillations at the driving frequency.
Phase portraits like these were also obtained by Hayashi [2],

By considering the initial phase 0(0) to be a random variable which might take on
any value between 0 and 2ir, it is possible to determine the probability of capture as-
sociated with each level of the initial amplitude of the subharmonic. The probability
of capture is then the ratio between the phases which will lead to synchronization to the
total possible phases 2k. Clearly, the probability of capture for the phase portrait in
Fig. 3b increases with the amplitude for initial values less than that of the equilibrium
state. It reaches a maximum when the initial value is in the neighborhood of the equilib-
rium state and decreases for higher amplitudes. For initial conditions which are far
from the equilibrium solutions, the assumption of slow variations of the amplitude and
phase no longer hold and the probability of capture cannot be determined with any
accuracy. The greater the magnitude of a, the narrower is the separation between B and
C and, hence, the smaller is the probability of capture. In other words, the range of
initial conditions which will lead to synchronization is decreased, and also a system
running synchronized at B is more susceptible to disturbances.

A more conventional display of synchronization properties is afforded if specific
values are selected for the driving amplitude, F, and the strength of the nonlinearity,
e. Then the closed curves of Figure 1 may be transformed to the wedge-shaped bands
of Figure 4. The Xn/m = 0 point of Fig. 1 transforms into the distinct R — 0 points
of Fig. 4, and regions of small Y„/m become regions of high o>. Since the analysis of this
paper has assumed y to be of order unity the detuning, (n /m2)w2 — Wq , should be of
order « and the curves of Fig. 4 are valid only near the appropriate frequency. The
dotted portions of the curves are large detuning behavior which has been predicted by
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a small detuning theory and are therefore questionable. (An analysis of large detuning
is given in [S].)

Figure 2 has shown that points for a > 0 are interior to the a = 0 curve. Similarly,
curves for (3 > 0 are interior to the /3 = 0 curves of Fig. 4, although they have been
omitted for clarity. It should be noted that the physically interesting case 0 = constant
is not a mapping of the curve a = constant of Fig. 2. The locus of vertical tangents
which separated the stable from unstable singularities in Fig. 2 maps into Fig. 4 as a
locus of vertical tangents for the curves /3 = constant, and points above this locus are
stable synchronized subharmonics.

Each order of subharmonic exists only in a single frequency band, and the width
of each band is smaller as n + to is larger. (Note that the width ofn + ?w = 2 + 4 = 6
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is very nearly equal to that of n + m = 1 + 5 = 6.) Due to the greater separation
between stable and unstable equilibrium points of the n/m = J subharmonic, it has, for
a given dissipation the greatest probability of capture. This explains the relative ease
of sustaining it experimentally.

So far the discussion has concerned subharmonics. For superharmonics much the
same remarks apply. There are three superharmonic frequencies, and the variable
transformation (45) is again employed. For the conservative case (# = 0) the equilibrium
characteristics of Fig. 5 are analogous to Fig. 1. Interior to each pair of curves for a
given n/m there are curves corresponding to values of a > 0. These have not been shown.
They are somewhat the same as the curves of Fig. 2 except that in this case they are open
toward the Yn/m axis and there is no limit to the size of a > 0 for which they exist. Again
the locus of vertical tangents to these curves of constant a separates the stable singulari-
ties from the unstable.

For a specific choice of F and e, Fig. 5 may be mapped into Fig. 6. For the super-
harmonic n/m = 3 the separation into stable and unstable synchronized solutions has
been indicated. It is interesting to observe the jump phenomenon which these oscillations
exhibit, similar to that well-known in harmonic synchronization. The corresponding
hysteresis cycle for n/m = 3 is sketched in Fig. 6. If the driving frequency is swept
slowly and continuously upward, R will follow the upper branch of the curve (a small
/S > 0 is assumed). When the point of vertical tangency is reached the oscillation drops
abruptly. On decreasing the driving frequency there is a corresponding abrupt increase
in the amplitude of R, but at a much lower frequency.

7. Generalized Duffing equation, even nonlinearity. The Duffing equation with
p = even merits special comment. The sub- and supcrharmonics which are able to be
synchronized are shown in [8] to be

rn _ p + 1 — A- — 2 v
n k p = even,

where k — 1,2,3, v — 0, 1, 2, 3, (p — k — l)/2 for k odd,
(p — k)/2 for k even.

Equations (41) and (42) still apply, and Cvmand are again given by (39), (40) and
(43). An important difference is that now B = 0. From this it follows (see [8]) that all
synchronized solutions other than the trivial R = 0 are unstable (saddle type singulari-
ties) . To the degree of approximation of this analysis no subharmonic or superharmonic
oscillations can be synchronized with an even p. However, if the driving force were to
contain an additional constant term of order unity, then the driven response would
contain a corresponding bias displacement. All of the foregoing analysis can be made
applicable by a simple shift of the datum of x. This shift of datum changes an even non-
linearity into a nonlinearity containing a mixture of even and odd terms. Now the
asynchronous term, B, in the Eqs. (41) and (42) is restored and, curiously, synchroniza-
tion is once again possible.

8. Example: Generalized Van der Pol equation. According to the results of Sec. 3,
the analysis of the Van der Pol system follows from that of the Duffing system since the
two are duals to each other. Therefore, if we consider the system:

x" + tx'(jpxr~l — x) + = F cos wt, F, x > 0, V ~ odd (48)
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then the amplitude and phase of the sub- or superharmonic oscillation It cos [(n/m)cot +
</>] satisfy:

: - u ^ = --«[£ Dl,n{R, S) cos m<t> + B(R, 5)] + - <cXR,
m clt m m m

2 -Uji? = -U[lc: ,(fl, £) sin m</>] - mRm ut m „

(49)

where /i = [(n /rn)w — Wq)]/«, and S), Cvm_n{R, S) and Dvm n(R, S) are defined by

(38, 39, 40, 43).

0.2 0.4 0.6 0.8
Yn NORMALIZED AMPLITUDE OF DRIVING RESPONSE

m

FIG. 5 AMPLITUDE RESPONSE CURVES FOR SUPERHARMONICS OF
FIFTH ORDER NONLINEAR ITY.
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FIG. 6 SUPERHARMONIC RESPONSE CURVES FOR FIFTH ORDER NONLINEARITY (F= 1.0, € = 0.1).

Through the equivalence relationships (29) and (30), Figs. 1, 2 and 5 represent the
subharmonic and superharmonic synchronized solutions in the self-excited (Van der Pol)
system. The coordinates of these figures now have the following representations:

R2 S2 n
Xn/m = (^27^1 ; Yn/m = ; a = (n/mW ^50)

Because of the relationship between singularity types in dual systems it follows that
the locus of vertical tangents in Fig. 2 once again separates saddles (below) from the
other types (above). It is interesting to note that in the Duffing type system it was neces-
sary that the detuning parameter, y, be different from zero for synchronized solutions
(as 7 —> 0, Yn/m —> to). Here in the Van der Pol system the requirement is that x be
different from zero, i.e., that the self excitation at very small amplitude be above some
threshold level.

The R — <j> integral curves of the Van der Pol system are orthogonal to those of the
dual Duffing system when plotted in log R — 4> coordinates. For a limited range near
R = 1 the orthogonality holds approximately in the R — <f> plane. The Van der Pol
trajectories are sketched in Fig. 3 for a small segment of the portrait.
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