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TRANSIENT ASPECTS OF TRANSITION RADIATION*

BY

E. OTT and J. SHMOYS
Polytechnic Institute of Brooklyn

I. Introduction. When a charged particle moving at uniform velocity crosses a
boundary between two media with different electrical properties, a pulse of electro-
magnetic energy is emitted. This phenomenon is basically unlike either bremsstrahlung
or the Cerenkov effect in that the charge will radiate even though it does not accelerate
or move faster than the phase velocity of light in the medium.

Various theoretical [1] and experimental [2] aspects of transition radiation have
recently been the subject of extensive study. It has been proposed that the effect might
be useful in the generation of microwave power and as a diagnostic tool for the study
of metals and plasmas.

It is clear that the effect is fundamentally a transient process. It is, therefore
surprising that the transient character of the fields has hardly received notice. Previous
investigators have concentrated on determining the frequency spectrum of the radiation
fields. We, on the other hand, will deal directly with the problem of finding the fields
as a function of time.1

In order to illustrate the essential characteristics of the processes involved, a specific
problem will be considered. For the problem selected an exact closed form solution is
obtained in a form amenable to physical interpretation. It is found that before the time
of impact the entire field may be represented in terms of an image picture, which is a
generalization of the static case. Even after impact the image picture remains valid,
but only in certain regions of space. At impact, a sudden burst of energy is liberated.
This energy then propagates outward from the impact point in a manner to be discussed
later. It is to be expected that the solution of the present problem will aid in the under-
standing of transition radiation in more complicated configurations, for which no closed
form solution is available.

The method used to evaluate the transient is patterned after that given by Felsen [3].
A representation of the solution in terms of Fourier integrals will be obtained; these
will then be reduced to such a form that they can be evaluated by inspection.

II. The problem. We consider the situation in which the regions z < 0 and z > 0
are occupied by two different nondispersive media. The dielectric constant e' and mag-
netic permittivity /u' are given by2

e' = c± and n' = n± .

The problem is that of determining the fields due to the charge density

n(r, t) ~ Q 5(x) 5(z — k(t)) — Q S(x) 8(z + vT + Sz) (1)
^Received September 12, 1966; revised manuscript received December 7, 1966.
•It has recently come to the attention of the authors that J. Cohen and R. M. Lewis have been

investigating the transient transition radiation problem. Their work and ours, however, are very dif-
ferent in both viewpoint and content.

2In terms of notation the statement: 'V = for z > 0 and / = ju- for z < 0" is written as m' = •
This notation will be used throughout.
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where T, ST and Sz are positive and k(t) = vt for t > —T and lc(t) = — vT — Sz for
t < —T— ST. Furthermore we assume that k(t) is monotonic and that dk/dt is con-
tinuous with dk/dt = 0 at t = —T— ST. The first term in (1) is representative of a mov-
ing line charge of strength Q, which starts moving from its rest position, z = —vT — Sz,
at the time t = —T — ST. By the time t — —T the moving charge has accelerated to
the velocity v, which it maintains for all time thereafter, t > —T. The second term in (1)
is representative of a stationary line charge of strength — Q, whose presence conveniently
assures that the charge density is zero for all time t < —T — ST. In (1), S(x) stands
for the Dirac delta function. The two dimensional problem thus formulated is illustrated
in Fig. 1.

We seek the solution to Maxwell's equations with the source n(r, t) which satisfies
the jump conditions at z = 0 and the initial conditions at t — —T— ST. Maxwell's
equations, valid for t > —T— ST, are

V X E(r, t) = , (2)
V I

V X H(r, t) = <± + J(r, t) (3)

where J(r, t) — Q8(x)S(t — g(z))z0 and t = g(z) is the inverse of z = k(t). We will use
x0 , y0 , z0 to denote unit vectors in the directions of the corresponding axes. The jump
conditions are that H(r, t) X Zo and E(r, t) X z0 are continuous across 2 = 0. The initial
conditions are that H(r, —T — ST) = 0 and E(r, —T— ST) = 0. Since J is in the
z0 direction

H = Hy0 , (5)

E = Ezzo + Exxo . (6)

The problem can be reduced to a scalar problem in the single variable F(r, t), defined by

H = yu(dF/dt), (7)
so that at points other than x = 0,

E = — V X (yu^) • (8)

III. Formal solution. We now apply a Fourier transform in time to all the field
quantities

E(r, t) = J exp (-iwl)e(z, x, «) dw, (9)

-Q

—vT+Sz. *7— Vt'

V
Fig. 1. The problem (I > 0).
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H{r, /) = ~ J exp (—icot)h(z, x, w) dw, (10)

F(r, 0 = ^ / exp (~iwt)](z, x, «) dev. (11)

From (2) and (3) (with kl = co2/i±e±) we get

(V2 + kl)] = — exp (iwg{z)) 5(.r)u(z + t'T + &), (12)
Io> ax

where u(z) is the unit step. Introducing Fourier transforms in x

1 f+"e(z, x, ai) = — J exp (ir)x)e'(z, 17, a) di), (13)

1 r+c°
h(z, x, u) = — J exp (ir)x)h'(z, y, u) d-q, (14)

i f+°°](z, x, w) = — J exp (irjx)f'(z, v, «) (15)

Utilizing the above, the following problem for f'(z, y, x) results

[d2/cfe2 + a2]/' = 0, z < — Sz — vT

= — — exp (iug(z)), — & — ?>7' < z < —vT
03

- —0^ exp (nz), — v7' < z, (16)
CO

where
2 7 2 2a* = k± — V ,

CO

7 = r
The jump conditions are that/' and (e±)_1 df'/dz are continuous across z = 0. In addition,
since the fields are initially zero, we must require that the solution to (12) satisfies a
radiation condition. The solution for /' satisfying (16) and the radiation condition is

/' = .4, exp ( — ia-z), z < —vT — Sz, (17a)

= f" exp {ia- |z + vT - gj + iwg(£ — t'?')j ^
O) 2ja_

+ yl2 exp ( —t<*_z) + .4.3 exp (ia_z), —1)2' > z > — vT — Sz, (17b)

= —-^P + .1, exp ( — ia-z) + A5 exp (ia-z), 0 > z > — vT, (17c)
co cy_ — 7

exp (nz)
2 2co a+ — 7

+ .I,, exp (i«,z), 2 > 0, (17d)

and the top Riemann sheet of a± is defined so that Im a± > 0 on the integration path
in Eq. (15). The coefficients , A2 , A3 , At , As , and Ae, are determined from the
jump conditions at z = 0 and the conditions that /' and df'/dz are continuous at z — —vT
and z — — vT — Sz.
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In order to simplify the problem, we let T —» + co. Before taking the limit we add
a small amount of loss to the medium in z < 0. Thus Im a_ > 0 and the term
exp (ia-vT) —> 0 as T —* + <=°. Eqs. (17) reduce to

/' = -T (nZl + A± exp (ia± \z\) (17')
co a± — y

where A+ = Limr_+„ A6 and A- = Lim7^+„ A4. The coefficients A+ and A- are given by

1 a+ — eyA_ =

A+=
co

_a+ +7 a_ — 7

1 -f- y/e
2 2a+ — 7 J

- [a+ + ea_], (18)

-T- [a+ + ea_] (19)

where e = «+/«_ .
It is to be expected that for any given values of (r, t) the resulting solution for F

will be a good approximation if T is large enough. From (17'), it is seen that introducing
the limit T —* + <» has the effect of removing from study the bremsstrahlung radiation
produced while the charge accelerates from rest to its final velocity v. Thus by letting
T —> + oo we are lead to a consideration of transition radiation not complicated by the
presence of bremsstrahlung.

We note that /', as given in (17'), consists of two parts: a particular solution of (16)
which corresponds to the field of the moving charge in an infinite homogeneous medium,
and a homogeneous solution of (16) which arises because of the presence of the boundary.

Let us express /' as

/' = /; + n (20)
where j'v is the particular solution to (16) and f'h is the homogeneous solution to (16) in
the limit T —> co . Likewise

/ = /„ + /* (21)

where /„ and jh are the inverse transforms of j'v and j'h with respect to x. Similarly we
write

F = F, + Fk . (22)

The term Fv is easily evaluated (see Appendix):

Fv = -£arctan _! for c± > (23a)

Fp = ^ sgn (x)u(vl - z — \x\ - 1 j for v > c± . (23b)

In (23) c± = (ju±e±)'i and u(x) is the unit step function. Equation (23b) shows clearly
the Cerenlcov wedge associated with a line charge moving with a velocity greater than
the speed of light in the medium.

Let us now briefly consider the transition radiation problem for a line dipole moving
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with uniform velocity v in the z-direction. The dipole is assumed to be oriented in the
direction of a unit vector 10. Let 1, and 12 be the vector components of 10 transverse and
parallel to the z-axis. Thus 10 = lx + 1, . The resulting charge density for the moving
dipole is

n(r, t) = p{[l + (1 - v/c2)uX]-\7\ 8(x) 8(z - vt) (24)

where p is the dipole strength and c is the speed of light in vacuo. The term (1 — v2/c)in
is due to the relativistic Lorentz-Fitzgerald contraction of a length which is parallel
to the direction of motion. One notes that

[n\ 1 ine dipole
2.
Q lx + ( 1 — 2 ) h vH«) 1 ine charge * (25)

From (25) and the linearity of Maxwell's equations it follows that

2\ 1/2

1 ine dipole U + U -j?J 1, V {F}„necwle (26)

with the resulting field quantities defined as in (7) and (8). Thus the solution to the
line dipole problem may be simply obtained from the solution to the line charge problem
as indicated in (26).

IV. Inversion of transforms.
A. General Considerations. This part of the paper will be devoted to an exact

evaluation of the fields EA and II h corresponding to Fh . From (17) and (15) we see that
/»is given by

/* = T^r / A±^ exp fia± I2' + ir,x^ dv• (27)

Utilizing Eqs. (7), (8) and (27) we have, after interchanging differentiation and
integration

e£ = — (=Fz'o:±Xo + irjZo)//' (28)

and

h{ = -to/1 • (29)

The basic idea is to manipulate Eq. (27) so as to obtain

ek — f V(0 exp (—iut) dt, hh = f W(t) exp ( — iwt) dt
J — CO J — CO

whence EA is equal to V(<) and IIk is equal to W(t). The transition from (27) will be
accomplished by contour deformations in the complex plane and by transformation
of variables. The general program outlined above has been used by other authors
(cf. [3]-[7]).

In the integral (27) the square roots are defined so that the integral converges,
as shown below, for small loss (i.e. e± = t'l + iS and 0 < S « e'±'). Figures 2 and 3
are used to define «_ and a+ respectively for z > 0, while 3 and 2 apply respectively
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to a_ and a+ for z < 0. Thus both a_ and a+ have positive imaginary parts on the path
integration (i.e. the Re (77) axis).

Following Felsen [3] we introduced the transformation

tj = k± sin w, z ^ 0. (30)

Defining A^(w) and AL(w) as
_ ~ 1/2

A'+(w) =
4jC +

1 — sin2 w + C-ev
1

— sm" w
(7/

1/2 „ 22 c+— — COS W 2
V V

-1 — sin2 w<j)v- \ COS w + e

.,, x Qc_ sin wAL(w) = -—2 1
r • 2 11/2[<7 — sin w] 

v
r • 2 11/2 1 2 C_
(7 — Sill W\ + — COS W 

V V

Re (77)

Fig. 3. Re a'± > 0 in the shaded region, and Im a I > 0 on the top sheet.

(31)

-¥■ {[a — sin2 w]1/2 e cos u>\ (32)

where <x = (c_/c+)2, Eq. (27) becomes

1 r kjK = - f A+(w) exp (irk+ cos (to — 6)) cos w —s dw, z > 0, (33)
IT J p 0)

1 f k-//, = —/ .41(10) exp (irk- cos (w — 6)) cos w —5 dw, z < 0, (34)
7T Jp O)

1 Im (77)

Re(T^)

Fig. 2. Im > 0 in the shaded region, and Re >0 on the top sheet.

Im(Tj)
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where the variables r and d have been introduced by setting

x = r sin 6 and |z| = r cos 6.

The path of integration P is shown in Fig. 4. Note that Fh is an odd function of 6 since
6 —> —6, w —> —w leaves the integrand unchanged but reverses the direction of the
path of integration.

Next the manner in which poles and branch points transform into the w-plane
must be investigated. Depending on whether the parameters <r, v/c+ and v/c- are greater
than or less than unity, the character of the disposition of poles and branch points will
be basically different. Each case must be treated separately. In Table I all possible
cases are listed. Cases 3 to 6 are distinguished by the presence of Cerenkov radiation.
While these cases are quite interesting, it is not our purpose here to study the Cerenkov
effect. Therefore we will concentrate on cases 1 and 2, which allow a study of transition
radiation not complicated by the presence of Cerenkov radiation. Treatment of cases
3 to 6 is reserved for a future publication. Since the analysis and results are very similar
for cases 1 and 2, only case 1 will be considered in detail. For case 1, v < c+ < c_ . The
disposition of poles3 and branch points is shown in Figs. 5 and 6. In Figs. 5 and 6

wbl = arc sin <r~I/2, wb, = | + i arc cosh a1/2, wVl = i arc cosh (c+/v),

wv, = i arc cosh (c~/v),

wv, = t arc sinh {[(c+/w)2 — (c+/c_)2]1/2j.

B. Deformation of the Path of Integration. The path of integration is now deformed
to the straight line Re (w) = 6. Care must be taken to avoid crossing any singularities.
A typical situation is shown in Fig. 7.

Im (w)

-rr_
2

Re (w)

Fig. 4. Path of integration in the u>-plane.

Table I: Parameter Ranges

case a v/c+ v/c-

1 >1 <1 <1
2 <1 <1 <1
3 >1 >1 <1
4 <1 <1 >1
5 >1 >1 >1
6 <1 >1 >1

3Only poles on the top sheet of the u>-plane are considered.
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Im(w)

° b,

%
wp

1 whb.

"WP,
"Wp3

Re(w)

Fig. 5. Disposition of poles and branch points of the integrand in Eq. (33) for the case v < c+ < c_ .

Im (w)

'Wb2*

wp
vz

-Wp

%
   Re (w)

Fig. 6,f jDisposition of poles and branch points of the integrand in Eq. (34) for the case v < e+ < c_

Im(w)

0
■ Re(w)

-w =0

Fig. 7. New path of integration for Eq. (33) with 8 > arc sin (cr'in) and v < c + < e_ .

It may be shown [3] that the horizontal paths z<» — tt/2 to +0 and — too -f- 0
to —too -f tt/2 do not contribute to the integral.

Thus /a may be expressed as the sum of three terms

u = /n> + r + r (35)
where

/(1> = the contribution to fh from integration along Re (w) = 6,
/<2) = the contribution to fh from integration around the branch cut,
fw — the contribution to fK from integration around poles.
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With the square roots defined as in Figs. 2 and 3 we have

A'±(w*) =

Thus the method of Felsen [3] is applicable, and /(1> may be inverted immediately.4

u, dFm 2 Re \A'+(wi) cos wt] u(c+t — r)
H ~ ~dF ~ ~ 7r[(c+//r)2 — 1]I/2 r lor * > °' (36)

fn dF(,) 2 Re fAL(w2) cos w2] u(c.t - r)
H =~ir~ ~ V[{c-t/r)^rr r < 0i (37)

Likewise Ea) for z > 0 is given by

(1) 2 Re [(—cos WjXo + sin wlz0)A'+(w1) cos w,/c+] u(c+t — r) .
~ ^+[{cJ/r)2 - 1]I/2 ' r 1 ^

and for z < 0

„d) _ 2 Re [(cos w2x„ + sin w2zn)AL(w2) cos to2/c_] u(c~t — r)
7T6-[{c-t/r)2 - 1]1/2 ' r (d9)

where wli2 = d — i arc cosh (c±t/r) and both [(l/<x) — sin2 w,]1/2 in (36) and
[o- — sin2 w2]1/2 in (37) are defined so that they have positive real parts. Letting X+ = c+t/r
in (36) and X_ = C-t/r in (37) we obtain

F'" - C" 2Rc dK U(K _ 1), m
J i 7r(,A± 1J

where wl>2 = 6 — i arc cosh \± . Note that FU) depends on r and t only through the
variable t/r.

C. Branch Cut Contribution. For z < 0, Fm — 0. For z > 0, the branch point is
intercepted when |0| > arc sin cr~W2. Thus for z > 0 and \0\ < arc sin cr~1/2, F<2) = 0.
Assuming z > 0 and tt/2 > d > 6,. (where dc = arc sin Fi2) is an integral along
the path shown in Fig. 8, where 8 is allowed to approach zero.
As S —* 0 the integral around the semicircle approaches zero. Thus

/<2) = Lim ^
5—»0 IT

f ' \ A'+(w)eirk+00" lw'e) cos w dw
Je+iS w

+ [' ' -5 COS wA'+(uWrk+°°"w-B) dw
Jd,-iS W

(41)

Im (w)

a
1 ■ ► Pfl (w J

T/2

sin -7=*J<y
Fig. 8. /(2>' integration.

4Felsen accomplishes this by making a change of variables from w to I, t = (r/ct) cos (w — 0), thus
reducing the integral along Re (w) = 6 to the desired form.
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Since A +'(a - id) = [4+'(a + iS)]*,

f3) = Lim r [' ' cos w Im [A'+(w)]eirk+°°' (""9) dw. (42)
5—»0 TTUJ Jec-*s

In (42) we define a new variable of integration, t, by letting c+t = r cos (w — 9). Equation
(42) becomes

_o cr'c* r
— iwf3) = — / cos w3 Im y4 '+(u)3)e'"' . , '   d/, (43)

C+TT Jr/c+co, (9c-9) r Sffl («>3 — 0)

where w3 = 6 + arc cos \+ , 6C < w3 < x/2, and the square root in (43) is taken as

[(1/cr) — sin2 w3]1/2 = t[sin2 w3 — l/o-]1/2.

Equation (43) is in the desired form and can be inverted by inspection:

Hm = Ml!   2 cos w3 A'+(w3)u(6 - 9C)
dt irr sin (w3 - 9) v ' v

■u(^t — ~ cos [0C — 9]ju(z)u(^ ,

RW = = ~irr(2lC- X?)'/g ^ 4'(U,3)W(1 ~ - e)u(6 - 9C). (44)

So far only the case ir/2 > 9 > 9c has been considered. A similar consideration for
— (tt/2) < 9 < — 9C shows that F<2) is an odd function of 6. Thus for the general case
of 7r/2 > |o| > ec

H'2) = ~sF = rr(.L ̂ X2)'7* Im sgn ~~ *+)u(z)u(w3 - 0„) (45)

where w3 = arc cos (X+) + ]0|, v/2 > w3 > 9C , tt/2 > |0|, and [(1/cr) — sin2 w3\l/2 =
t[sin2 w3 — l/<r]1/2. Similarly we obtain for E<2>

(2) 2 cos w3/c+ , . .
7rr(l - X)'/2 ^Sm W3X° ~ C°S W^0'

•Im A'+(wJ) sgn (9)u( 1 — X+)w(z)w(«j3 — 9C). (46)
Thus from (45)

Fw = f + cos w3
C+7T Jcos (»t-|9|)

•Im A'+(w3) sgn 0-u(|0| - 0e)u(l - X+)w(w3 - 0c)u(z). (47)

The final result is

Fm = — f cos to3 Im A'+(w3) dw3u(l — \+)u(w3 — 0c)sgn (0)w(|0| — 9c)u(z) (48)
C+7T Jo,

where — (tt/2) < 9 < ir/2,

w3 = arc cos (X+) + \9\, 0 < w3 < | , [(1/tr) — sin2 io3]1/2 = i[sin2 w3 — l/tr]1/2.
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Figure 9 shows the regions in space where F'1' and F12' contribute. Evidently
Fu> + Fm represents a burst of energy originating at the impact point. After impact
this energy propagates outward from the impact point in the manner illustrated in
Fig. 9.

From (48) we see that F'2' depends on the variables r, 6, t only through the single
real variable w3 = [arc cos (c+t/r) + |0|]- Thus F{2) is constant along the lines w3 =
constant. These curves are straight lines tangent to the wave front r = c+t as shown
in Fig. 10. The variable w3 itself has a simple geometric interpretation: it is the angle
of the line from the origin to the point of tangency of the line of constant F<2). This
is illustrated in Fig. 11.

The similarity properties of FU) and F<2> (i.e. Fil) depends on r, 6, t only through
t/r and 6, and F'2' is a function of w3) may be inferred on other grounds [10], as was
done by Gardner and Keller [8] and by Papadopoulos [9], who show that the lines
w3 = constant are the characteristics of a certain hyperbolic equation.

What do the similarity properties of F imply for the physical field quantities E
and H? From Eq. (36) to (39) we readily infer that both //„" and EU) have the functional
form

g1(t/r, e)/r.

From Eqs. (45) and (46), H(y2) and El2) have the functional form

g^(w3)/r(l - x;)I/2.

The solution for case 2 of Table I may be obtained by letting z —> — z, v —* —v and
c± —> cT in the expression for F'2}. The equations for Fl" remain unchanged. For case 2
the regions where F u and F'2) contribute are the same as in Fig. 9 if one imagines the
whole picture to be reflected across the x-axis.

r cos(9-9c) = c+t

cos (6+9 ) = c t
O T

Region where f'1' contributes

1II111 i 11 111 Region where ^ contributes
Fig. 9. Regions where F(1> and F(2) contribute.
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Fiq. 10. F<*> constant along the dotted lines. The dotted lines are tangent to the circle r = c+t.

W3 = 0O

r=c_t

Fig. 11. The line w, = 0O •

D. Pole Contributions. We now evaluate F'3) for z < 0. We note from Fig. 6 that
for 9 > 0 (i.e. x > 0) the pole at wv, is intercepted. This pole corresponds to

where /3± = v/ct . At j

■0 = Vv. = t^sgn(«)(l - /JL)1/a (49)

a+ = ^ (1 + (50)
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and

Define

Thus

a_ = co/t>. (51)

7 _ i jm r/   X A ( M _ Q_ (1 + Pi - P-Y/2 - e .
i.™ '?I") (T')] 2a (1 + Pi - (32-)1/2 + « ^ ^

/(3) = exp | — i^z — ^ |co| (1 — j3f.)1/2| , x > 0. (53)

Since F is an odd function of x

f<3) Q sg" M.l 7 exD < —— y M /i _ /g2)1/2l C54)
' ~ 2iw e + (1 + pi - pl)w2 eXP \ H v (1 P~} J (54)

for z < 0. Comparing fa) with /„ for v < c_ in the Appendix we have

(3) _ _ Q (1 + Pi - /3l)1/2 - e 1" 2 + »< 1
' ~ 2* (1 + Pi - )82)1/2 + e arC Un Lx(l - pl)1/2J • 2 < u- (55)

For z > 0 there are two poles, u\x and wv, . An analysis similar to that for z < 0
yields

Fw = arc tan 2 — Vt

Mi - pl)W2\

2e
e + (1 + pi - pl)1/2

for z > 0. Setting

arc tan
(i + pi - piynz - vt

®(1 - /£)I/2 (56)

we have

Fv + F<3> = — arc tanQ
2x

for 2 < 0, and

2 — M

o _ (i + el - ft-)1/2 -«0 ,57)
yi (i + /s2 - piy/2 +«y ^ j

Q2 = (1 + /J2 -V)1'2 + 6 Q (58)
= 1,(1 + pi - piy1/2 (59)

z — vt "] Qi
J 2ttMl - P-),2\ 1/2 arc tan z + vt

Lz(l - P2-)2 \ 1/2 (60)

+ F<3) = — arc tan
Ztt

for 2 > 0. (61)
_s(l - t>2/c2+)1/2_

With the fields + F<3) represented as above we see that a simple image picture
applies (cf. Figs. 12(a) and 12(b)).

The field created by the uniformly moving charges Q and Qx in the infinite homogeneous
medium (e_ , /z_) in Fig. 12(a) is identical to Fv + Fw when z < 0. Similarly, the uni-
formly moving charge Q2 in Fig. 12(b) sets up a field identical to Fv + Fw for z > 0.
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For t < 0, F(1> and F'2) are zero. Thus the entire solution is given by the image
pictures in Figs. 12(a) and 12(b). For t > 0, F(1> and Fm are zero outside the cross-
hatched regions in Fig. 9. Thus the image picture is again the entire solution in this
region. Inside the cross-hatched regions (Fig. 9) the entire solution is the sum of the
fields given by the images and F(1) -f- F,2). For t > 0, Figs 13(a) and 13(b) show the
resulting image picture.

For t > 0, there is one apparent objection to this solution. This is that image charges
are located in the observation region (i.e. Qi is in the region z < 0 and Q2 is in the region
z > 0). Furthermore, the true charge Q in Fig. 13(b) does not appear in the observation
region z > 0 where it is actually located. All these points may be clarified if one realizes
that the field consists of the sum (Fv + F{3)) + F{1) + Fm. It may be shown that E(1)
has a singularity at z — v2t which exactly cancels the singularity in E<3) due to Q2 ;
also, Eu) has a singularity at z = vt which is the same as would be produced by a charge
Q at that point.

The result that the image picture remains valid for t > 0 at observation points
outside the domain of influence of F'1' + F'2) may be explained as follows: at a time
t < 0 an observer sees the field due to the image, which he assumes is due to an actual
charge in an infinite homogeneous space. In fact, the observer has no way of knowing
that the space is not infinite and that the image is not really a true charge. At t = 0
the charge strikes the boundary and the information that the space is not infinite begins
to be felt. This information, however, is not immediately given to the observer but
takes a finite amount of time to reach him. In fact, the information is contained within
the domain of influence of Fn) + Fw. As far as the observer is concerned, before the
information reaches him the fields will be correctly given by the image picture.

Q

1*—vt
Q Q,

-vt
^ -V2t

E+J f-+

Q,

Fig. 12(a). Image picture for z < 0, t < 0.

Fig. 12(b). Image picture for z > 0, t < 0.

x X

e-< H-- €+. fJ- +

[— vt -vt

e+, /i +

Q,
v,t b-

Fig. 13(a). Image picture applying for z < 0, t > 0.

Fig. 13(b). Image picture applying for z > 0, t > 0.
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V. Further discussion of the solution.
A. Nonrelativistic Approximation. In order to obtain a nonrelativistic approxi-

mation to the fields, let 7 —> « in Eqs. (18) and (19). Then

A'. = (62)
co a+ -f- ecr_

where the dagger means "nonrelativistic approximation to." Consider now the field
of a pulsed line dipole slightly to the right of the interface (Fig. 1). The current density is

J = J S(x) 5{z — 0+)u(t)z0 (63)

where 0+ denotes a small positive quantity and u(t) is the unit step function. For this
problem one may again define a scalar function Fd from which E and Hy may be found
as before from Eqs. (7) and (8). Taking Fourier transforms in x and t and solving the
resulting problem for jd yields

fd = B exp (-ia± |z|) (64)

where

B =  x  (65)u <*+ + ea_

Comparing Eqs. (62) and (65) we see that if

J = Qv( 1 - e), (66)

then

/! = /«• (67)
Thus Eq. (66) gives the strength of an equivalent current element which produces the
same fields as the nonrelativistic transition radiation from a line charge of strength Q.

When is the approximation valid? Referring to Eqs. (44), (36) and (37), we see
that the approximation is valid for5

(1) c±y> v |cos Wi,2| in the region where F(1) contributes,
(2) c+ >>> v |cos w3\ in the region where F!2) contributes.

Since cos wlt2 = cos [0 — i arc cosh X±] = \± cos d + i(\* — 1)1/2 sin 9 and w3 is real
(thus cos w3 < 1), conditions (1) and (2) become

(1) r » vt
(2) v « c± .

Clearly (1) breaks down if the observer is too close to the origin. Condition (1) will,
however, be fulfilled over a very large percentage of the region where Fll) contributes
(i.e., the region c±t > r) if c± » v. It is on this basis that the term "nonrelativistic"
is justified. Figure 14 shows a graph of the percent error in the nonrelativistic approxi-
mation for Hh in the case e —> 00, g = 45°. We note that for d/c_ = 0.05 the error is
less than 2% for r > cJ/2. For v/c_ = 0.01 the error is less than 1.25% for r > c_£/5.
This helps give some quantitative meaning to the requirement r » vt.

6It is assumed that neither e nor 1/e is very large compared to unity.
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% ERROR IN Hh

005

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 r/c_t
Fig. 14. % error in nonrelativistic approximation for e —► <x>, 0 = 45°, z <0.

B. Fields Near the Wavejronts. We note that the solution possesses wavefronts at
which it may be discontinuous or singular. These are the cylindrical wavefronts at
r — c±t and the plane wavefront at w3 = 6C . In this section we will be interested in
the behavior of the fields near the wavefronts.

Near r = c±t we may approximate wlt2 and (c2t2 — r2)1/2 as

Wj.2 = e — i arc cosh (c±t/r) = 8, (68)

(&f - r2)172 S* [2r(cj - r)]I/2 = (2rL>)1/2 (69)

where L, denotes the distance from the observation point to the wavefront, r = cj.
Thus for r = c±t

H»> ^ _2^ Re [cos 0^(0)] w(c^ _ r)
■it V-kiJ

Thus we see that Hn) diverges like (Li)~1/2 near the wavefront. Furthermore the strength
of this singularity decreases as (r)_1/2.

It is slightly more difficult to obtain an expression for H'2} near w, = 0C. For w3 = 9C
the square root, (l/<x — sin2 w3)1/2, is a small positive imaginary quantity

iS = (l/o- — sin2 w3)W2.
Thus,

1 _ iS + c+/(tv)
_iS — c+/v cos2 6C — c /v2_

A'+(w3) ^
aci sin 6.

2c+

Expanding (71) for small 5 yields

4- [cos 6C + «£]. (71)

Im 3 -fr ^ [i - . _ (< i iy/c.]
a2/c\ r 

(e2 - c)I/2 L1 6 - (6 - !)«. (72)
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where we have set a = e (i.e. /j+ = ^_) in order to simplify the algebra. It now remains
to find an approximate expression for 5

S — (sin2 w3 — l/<r)I/2 = (2 sin 0c)1/2(sin w3 — sin dc)wl. (73)

Near w3 = dc

sin w3 ~ sin dc + sin (w3 — 0C) cos 6C . (74)

Now to find sin (w3 — dc) (cf. Fig. 15). For B very close to C, B' is close to A' and we have

sin (w3 - dc) ̂  U/CA' (75)

where L2 denotes the distance from the observation point to the wavefront. But

CA' = r sin (0 — 6C) (76)

and

L2 = c J — r cos (6 — dc). (77)

Thus'from Eqs. (73) to (77)
1/2

5 ^ (e - 1)'
"•» f —

c+t — r cos (6 — 8C)
r sin (6 — 6C)

-W3~0C

(78)

Fig. 15. Determination of sin (u>i — 0«).
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This approximation is valid as long as L2 « CA'. From Eqs. (44), (72) and (78) we
obtain as the final result

H'" = g(rSin (t-'or <79>
where the constant K is given by

K =

v2 1 -
(e - 1 )1/2 L e — (e — l)v2/c2+_\

for ju+ = I"- • Thus we see that //„ is continuous across w3 = dc but that its first derivative
is infinite at w3 = 6C . We note that the behavior of Hv near the cylindrical wavefronts
is much more singular than near the plane wavefronts.

It is well known that in a transient problem, such as the one we are treating, the
wavefront discontinuities and singularities propagate according to the laws of geo-
metrical optics [11], [12], This is readily confirmed by Eqs. (70) and (79). Hw has the
(r)_1/2 dependence typical of a geometrical optics cylindrical wave. This factor results
from an application of energy conservation within a ray tube diverging from the origin.
Since r sin (0 — dc) in Eq. (79) is a length along w3 = 6, Hw is in the form
of an inhomogeneous plane wave. Thus H(2) also obeys the laws of geometrical optics
near the wavefront.

VI. Summary. An exact closed form solution for the transition radiation of a
uniformly moving line charge has been obtained. This solution may be thought of as
consisting of two parts. One part is essentially given by an image representation. The
other part originates at the impact point and propagates outward.

Certain features of the solution have been discussed:

(1) its similarity properties,
(2) its behavior near the wavefronts,
(3) its behavior in the non-relativistic case.

The motion of the charge has been assumed normal to the interface and slow enough
so that no Cerenkov radiation is produced. The authors have also treated the more
general case of oblique incidence of the charge accompanied by Cerenkov radiation.
The results of this investigation will be published in the near future.
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Appendix: Evaluation of Fv . The object of this appendix is to derive Eq. (26).
The subscripts + and — will be dropped here.

_ Q_ f + " f + " exp [i(uz/v + vx - co/)] iv 7
" 47r2i_. t}2 — co2(l/c2 — 1/v2) iu v
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or

Fv = ~ / /„ exp (-iwt)

where for v > c

dw

'■ -1 /.:' „ Wlth A*_i© - 0)u 7^-:7] — K

and for c > v

Q f + c° exp [i(wz/v + rj.r)] ,
Ip = o— / ^ 2-7-72 «»/ With

Z0J7T J_ra V iv
L =

Case I: v > c. The poles of the integrand are displayed in Fig. A-l for a> > 0.
Adding slight loss means giving the dielectric constant a small positive imaginary part.
Thus for a) > 0 the quantity K/w has a small negative imaginary part. This allows us
to define the path of integration so that the radiation condition is satisfied. The path
of integration is shown in Fig. A-2. If x < 0 we close the integration path with a large
semicircle at infinity in the lower half of the 17-plane. The addition of this semicircular
path leaves the value of the integral unchanged since the integrand goes exponentially
to zero for |?;| —* °° in the lower half rj-plane. Applying the Cauchy residue theorem,
it is seen that the value of the integral is 2wi multiplied by the residue at the pole rj = —K.
The result is

, Q1. - 2S <«P (% + X*)

Im (17)

-K
-X-

for ,r < 0.

77-PLANE

K
-X *■ Re (17)

Fig. A-l. Poles.

Im (17)

-Gi-

77-PLANE

 ►—»■ Re (rj)

Fig. A-2. Integration path.
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Likewise if x > 0 we can close the path in the upper half r;-plane. We obtain

In both cases

'•" exp

<• = (s) ,,xp

- Kxj for x > 0.

„'i" + X |X|)_
It turns out that the same result is obtained when it is assumed that w < 0. The inverse
Fourier transform of /„ is

F, = § sgn (x)u[t - I - \x\ [(4) - (4)] }•

The behavior of Fv is illustrated in Fig. A-3.
Case II: c > v. In this case the poles of the integrand lie on the imaginary axis,

and the integration path runs along the real axis (cf. Fig. A-4).
Closing the contour as before for x > 0 and x < 0 we obtain

h = ^sgn(x)exp {*'(?)" 6,1x1 [(?)"(?)] } for w>0'

arc tan (-^-1) "2

z

Fia. A-3. Cerenkov wedge.

Im(7j) rj -PLANE 

:-i|L|

Fig. A-4. Integration path.

Re (17)
PATH OF
INTEGRATION
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for w < 0.- ^sgnMexpWfj+^M (?) ~ (?).
1/2

Thus

1\ (l 1/2

— iiot f du{<?)-!■

L ircxp {•'(?)+" w [(?) - (?)] ~+
Hence

F =1 V

Let

and

I [u(f -')] "p 111 [(?)_ (?)] }d"-

Then

But

so that

Q = co |x| [(1/f2) - (l/c2)]1/2,

vt _ OA) ~ * 
|«| [1 - (v/c)T2'

Pv = ~|^Sgn W fo V8111

r e"n
— sin (UK') dti = arc tan K',

„ Q J z — vt
l< — — — arc tan  21 1/22ir U[1 ~ (f/c) ]
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